Answer:
Given sides 12, 16 and 20 can be the sides of right triangle.
Explanation:
Sides of right triangle always follow the Pythagoras theorem.
i.e
![(base)^2 + (Height)^2 = (Hypotenuse)^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/um3kocd8wyvg8z7b41ks78ul2ah76ut5ik.png)
For the given Lengths 7, 40 and 41
We need to check if
![7^2 + 40^2 =41^2 \\or\\ 7^2 + 40^2 \\eq41^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zan2knno6p84vplh30d2fq6w43gdqe4v3x.png)
![Since \\7^2 + 40^2 = 1649\\and \\41^2 = 1681](https://img.qammunity.org/2020/formulas/mathematics/middle-school/150smmxldh1t4qm5q1fn6efc6gb98tdhf1.png)
That means,
![\\ 7^2 + 40^2 \\eq 41^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lp1g8kpfu5vmk6x5g4ste22l4jddu27qbd.png)
hence 7,40 and 41 can not be the sides of right triangle.
Next,
Given sides 12,16 and 20.
Again follow the similar process used in the above problem.
![12^2 + 16^2 =400\\And \\20^2 = 400\\Since 12^2 + 16^2 = 20^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/k3bnd7nj7txaetuq8f9r8bon3c0sapqngm.png)
Therefore given sides 12,16 and 20 can be the sides of right triangle.