168k views
3 votes
For what value of x is sq 896z^15/225z^6 = xz^4/15

For what value of x is sq 896z^15/225z^6 = xz^4/15-example-1
User Vonnie
by
7.7k points

1 Answer

2 votes

Answer:

Value of x is, 8

Explanation:

Given:
\sqrt{(896z^(15))/(225z^6)} =(xz^4)/(15) √(14z) ,.....[1]

To find the value of x:

Using exponent rules:


  • (a^n)^m = a^(nm)

  • a^n \cdot a^m = a^(n+m)

Taking square both sides in [1] we have;


(896z^(15))/(225z^6) = ((xz^4)/(15))^2 \cdot (14z)

Simplify:


(896z^(15))/(225z^6) =(x^2z^8)/(225) \cdot (14z)

or


(896z^(15))/(225z^6) =(14x^2z^9)/(225)

Multiply both sides by
(225)/(14z^9) we get;


x^2 = (896 z^(15))/(225z^6) * (225)/(14 z^9) = (896 z^(15))/(14 z^(9+6))

Simplify:


x^2 = (896 z^(15))/(14 z^(15)) = 64

or


x = √(64)

Simplify:

x = 8

Therefore, the value of x is, 8


User Yang You
by
7.4k points