120k views
5 votes
Lim x-0 (sinxcos2xcosx)/sec4xtan3x

1 Answer

3 votes

Same general strategy as with your other question: rewrite the fraction to include factors of
(\sin ax)/(ax) or
(ax)/(\sin ax).


(\sin x\cos2x\cos x)/(\sec4x\tan3x)=(\sin x\cos x\cos2x\cos3x\cos4x)/(\sin3x)


\implies\displaystyle\lim_(x\to0)\cdots=\frac13\lim_(x\to0)\frac{\sin x}x\lim_(x\to0)(3x)/(\sin3x)\lim_(x\to0)\cos x\cos2x\cos3x\cos4x

All limits approach 1, so the ultimate limit is
\frac13.

User Leo Alekseyev
by
5.7k points