Answer:
The function f(x) is neither even nor odd.
Explanation:
The given function is
![f(x) = -3x^4 - 2x - 5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/v38vug60kugx9889a8lc2t2sywvnzbqdo8.png)
A function is called an even function if
![f(-x) = f(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/sj74219cjfl8su16m91d4slugikwvjto1u.png)
A function is called an odd function if
![f(-x) = -f(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zf7uh6ok0cvdj0xxu55f1hcbki4b5gc2wf.png)
Substitute x=-x in the given function, to check whether the function is even, odd, or neither even nor odd.
![f(-x) = -3(-x)^4 - 2(-x) - 5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nyfng94o5r8u6aim8ti91cujsgsi27moz1.png)
![f(-x) = -3(x)^4 + 2(x) - 5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2srojf63m3l535vsbz98zkbuhu484jadbv.png)
![f(-x) \\eq f(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pep4lfu4gxqj0oh22x7e5e600ub37wyqpb.png)
![f(-x) \\eq -f(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/da53c1m6uiyc27pq93m49l4mh1r2nmflyw.png)
Therefore the function f(x) is neither even nor odd.