Answer:
Given that:
![L(t) = 52\sin((2 \pi t)/(365))+728](https://img.qammunity.org/2020/formulas/mathematics/high-school/mv8vvt0u8yog72jl3pv8t8ginvahoixchp.png)
where
L(t) represents the length of each day(in minutes) and t represents the number of days.
Substitute the value of L(t) = 750 minutes we get;
![750= 52\sin((2 \pi t)/(365))+728](https://img.qammunity.org/2020/formulas/mathematics/high-school/inw7w27fk5vggb2c0bzo71edcrdezz6be7.png)
Subtract 728 from both sides we get;
![22= 52\sin((2 \pi t)/(365))](https://img.qammunity.org/2020/formulas/mathematics/high-school/ao0enliudc6wpjzjo0bzb8lcnt278yrhrd.png)
Divide both sides by 52 we get;
![0.42307692352= \sin((2 \pi t)/(365))](https://img.qammunity.org/2020/formulas/mathematics/high-school/eq3bk91s1twml88z1bw4hy8m906kdmrtxk.png)
or
![(2 \pi t)/(365) = \sin^(-1) (0.42307692352)](https://img.qammunity.org/2020/formulas/mathematics/high-school/eo6pbyisdqiolfvu12t2wpvxhwtve45h32.png)
Simplify:
![(2 \pi t)/(365) =0.43683845](https://img.qammunity.org/2020/formulas/mathematics/high-school/x84y0zupzlmo9030rmwx0blhgnkrrtw22b.png)
or
![t = (365 * 0.43683854)/(2 * \pi) = (365 * 0.43683854)/(2 * 3.14)](https://img.qammunity.org/2020/formulas/mathematics/high-school/axuyw82mpbx5wbqdg9vxxjkfrx9w7msc13.png)
Simplify:
days
Therefore, the first day after the spring equinox that the day length is 750 minutes, is 25 days