50.2k views
2 votes
PLEASE HELP ASAP!!! CORRECT ANSWERS ONLY PLEASE!!!

What is the point of maximum growth rate for the logistic function f(x) ?

Round your answer to the nearest hundredth.

PLEASE HELP ASAP!!! CORRECT ANSWERS ONLY PLEASE!!! What is the point of maximum growth-example-1

1 Answer

6 votes

Answer: C. (0.73, 10)

Explanation:

Maximum growth occurs at f'(x). Maximum growth rate occurs when f''(x) = 0


f(x) = (20)/(1+9e^(-3x))


f'(x) = (540e^-3x)/((1+9e^(-3x))^2)


f''(x)=(1620e^(-6x)(-e^(3x)+9))/((1+9e^(-3x))^3)


0=(1620e^(-6x)(-e^(3x)+9))/((1+9e^(-3x))^3)


0 = (1620e^(-6x))(-e^(3x)+9)


1620e^(-6x)=0\\ e^(-6x)=0\\ ln\ e^(-6x)=ln\ 0\\ ln\ 0\text{\ is NOT VALID}



-e^(3x)+9=0\\ 9=e^(3x)\\ ln\ 9=ln\ e^(3x)\\ ln\ 9=3x\\ \\ (ln\ 9)/(3)=x\\ \\ 0.73 = x


f(0.73) = (20)/(1+9e^(-3(0.73)))

= 10


User Bitswazsky
by
6.1k points