180k views
1 vote
Find the area in the first quadrant bounded by the arc of the circle described by the polar equation r = 2 sin θ + 4 cos θ. The circle is graphed in the accompanying figure.

A. 5π/2 B. 5 π C. 5π/2 + 4 D. 5 π + 8

1 Answer

1 vote

The first quadrant restricts us to the domain
0\le\theta\le\frac\pi2. So the area of the region, call it
R, is


\displaystyle\iint_R\mathrm dA=\int_(\theta=0)^(\theta=\pi/2)\int_(r=0)^(r=2\sin\theta+4\cos\theta)r\,\mathrm dr\,\mathrm d\theta=\frac12\int_(\theta=0)^(\theta=\pi/2)(2\sin\theta+4\cos\theta)^2\,\mathrm d\theta

Expanding the integrand yields


(2\sin\theta+4\cos\theta)^2=4\sin^2\theta+16\sin\theta\cos\theta+16\cos^2\theta=4+8\sin\theta\cos\theta+12\cos^2\theta

Apply the double angle identities:


\sin2\theta=2\sin\theta\cos\theta\implies16\sin\theta\cos\theta=8\sin2\theta


\cos^2\theta=\frac{1+\cos2\theta}2

So the integral is


\displaystyle\int_0^(\pi/2)(5+4\sin2\theta+3\cos2\theta)\,\mathrm d\theta


=5\theta-2\cos2\theta+\frac32\sin2\theta\bigg|_0^(\pi/2)


=\left(\frac{5\pi}2-2\cos\pi+\frac32\sin\pi\right)-\left(0-2\cos0+0\right)=\frac{5\pi}2+4

so the answer is C.

User Palmer Dabbelt
by
8.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories