168k views
0 votes
Please help I can't figure it out

Please help I can't figure it out-example-1

2 Answers

6 votes


\frac{3 {x}^(2) \: - \: 20x {y}^(3) \: - \: 18 {y}^(2) }{12x {y}^(2) } \: = \: \frac{3 {x}^(2) }{12x {y}^(2) } \: - \: \frac{20x {y}^(3) }{12x {y}^(2) } \: - \: \frac{18 {y}^(2) }{12x {y}^(2) } \: = \: \frac{x}{4 {y}^(2) } \: - \: (5y)/(3) \: - \: ( 3)/(2x)
C.
User Muhammet Demir
by
4.5k points
5 votes

Answer:
\bold{(C)\ (x)/(4y^2)-(5y)/(3)-(3)/(2x)}

Explanation:

Divide each term in the numerator (top) by the entire denominator (bottom) and cross out their common factor(s).


(3x^2)/(12xy^2) = (3x(x))/(3x(4y^2))=\boxed{(x)/(4y^2)}


(20xy^3)/(12xy^2) = (4xy^2(5y))/(4xy^2(3))=\boxed{(5y)/(3)}


(18y^2)/(12xy^2) = (6y^2(3))/(6y^2(2x))=\boxed{(3)/(2x)}

User Banty
by
4.9k points