175k views
4 votes
Somebody please assist me here

Somebody please assist me here-example-1

1 Answer

5 votes

The base case of
n=1 is trivially true, since


\displaystyle P\left(\bigcup_(i=1)^1 E_i\right) = P(E_1) = \sum_(i=1)^1 P(E_i)

but I think the case of
n=2 may be a bit more convincing in this role. We have by the inclusion/exclusion principle


\displaystyle P\left(\bigcup_(i=1)^2 E_i\right) = P(E_1 \cup E_2) \\\\ P\left(\bigcup_(i=1)^2 E_i\right) = P(E_1) + P(E_2) - P(E_1 \cap E_2) \\\\ P\left(\bigcup_(i=1)^2 E_i\right) \le P(E_1) + P(E_2) \\\\ P\left(\bigcup_(i=1)^2 E_i\right) \le \sum_(i=1)^2 P(E_i)

with equality if
E_1\cap E_2=\emptyset.

Now assume the case of
n=k is true, that


\displaystyle P\left(\bigcup_(i=1)^k E_i\right) \le \sum_(i=1)^k P(E_i)

We want to use this to prove the claim for
n=k+1, that


\displaystyle P\left(\bigcup_(i=1)^(k+1) E_i\right) \le \sum_(i=1)^(k+1) P(E_i)

The I/EP tells us


\displaystyle P\left(\bigcup\limits_(i=1)^(k+1) E_i\right) = P\left(\left(\bigcup\limits_(i=1)^k E_i\right) \cup E_(k+1)\right) \\\\ P\left(\bigcup\limits_(i=1)^(k+1) E_i\right) = P\left(\bigcup\limits_(i=1)^k E_i\right) + P(E_(k+1)) - P\left(\left(\bigcup\limits_(i=1)^k E_i\right) \cap E_(k+1)\right)

and by the same argument as in the
n=2 case, this leads to


\displaystyle P\left(\bigcup\limits_(i=1)^(k+1) E_i\right) = P\left(\bigcup\limits_(i=1)^k E_i\right) + P(E_(k+1)) - P\left(\left(\bigcup\limits_(i=1)^k E_i\right) \cap E_(k+1)\right) \\\\ P\left(\bigcup\limits_(i=1)^(k+1) E_i\right) \le P\left(\bigcup\limits_(i=1)^k E_i\right) + P(E_(k+1))

By the induction hypothesis, we have an upper bound for the probability of the union of the
E_1 through
E_k. The result follows.


\displaystyle P\left(\bigcup\limits_(i=1)^(k+1) E_i\right) \le P\left(\bigcup\limits_(i=1)^k E_i\right) + P(E_(k+1)) \\\\ P\left(\bigcup\limits_(i=1)^(k+1) E_i\right) \le \sum_(i=1)^k P(E_i) + P(E_(k+1)) \\\\ P\left(\bigcup\limits_(i=1)^(k+1) E_i\right) \le \sum_(i=1)^(k+1) P(E_i)

User Voonic
by
3.1k points