Answer:
Volume of solid is
![(40)/(3)\pi](https://img.qammunity.org/2020/formulas/mathematics/high-school/4xym82nmn298cgi3kiusn6xuc7cvkqa803.png)
Explanation:
We need to find the volume of solid formed by rotating the region bounded by the graph of
, y-axis and the line y=3 about the line y=5.
Please see the attachment for figure.
Using Shell method,
![V=\int_a^b\pi (R^2-r^2)dx](https://img.qammunity.org/2020/formulas/mathematics/high-school/xgtypltuo6niqivld3wzmyr8m2pkip8o6b.png)
where,
a=0 (Lower limit of solid)
b=4 (Upper limit of solid)
(Outer Radius of Shell)
r=2 (Inner radius of shell)
dx is thickness of shell
Volume of shell, dV=Area of shell x Thickness
Volume of solid
![V=\int dV](https://img.qammunity.org/2020/formulas/mathematics/high-school/ge516wwq0fomomvj36ghjwitb2z53acoq1.png)
![V=\int_0^4 \pi [(4-√(x))^2-2^2]dx](https://img.qammunity.org/2020/formulas/mathematics/high-school/b68spf3zcv3eehmeikx4udlqr50lit48qn.png)
![V=\int_0^4 \pi (16+x-8√(x)-4)dx](https://img.qammunity.org/2020/formulas/mathematics/high-school/hccz8ii6pi1fpka7w14qkdtscnpdhwp8ic.png)
![V=\pi (12x+(x^2)/(2)-(16)/(3)x^(3/2)|_0^4](https://img.qammunity.org/2020/formulas/mathematics/high-school/dkv3fx1cge3sei8igg21ftqq3ezyiyob0n.png)
![V=\pi (48+8-(128)/(3))](https://img.qammunity.org/2020/formulas/mathematics/high-school/v9wmtksyo8g3h02adahs8b4lwbmdch7rs6.png)
![V=(40)/(3)\pi](https://img.qammunity.org/2020/formulas/mathematics/high-school/aig2dep16vbnp4s0d630karwjewx7jtdjr.png)
Thus, Volume of solid is
![(40)/(3)\pi](https://img.qammunity.org/2020/formulas/mathematics/high-school/4xym82nmn298cgi3kiusn6xuc7cvkqa803.png)