Answer:
(-3, 4/375)
Explanation:
Given : The function
is reflected across the y-axis to create the function g(x).
To Find: Which ordered pair is on g(x)?
Solution:
Rule of reflection over y axis : (x,y)→(-x,y)
So, when the function
is reflected across the y-axis
So, we obtain a function :
![f(-x) = (1)/(6)((2)/(5))^(-x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2rvkffn1u09z2pbzxidzc83jv7rpa0k26l.png)
So,
![g(x) = (1)/(6)((2)/(5))^(-x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ou3i75oie750t2fskrq2g6s1zll3m9pgky.png)
Now substitute the given options to check which satisfies the equation.
a.(-3, 4/375)
![(4)/(375)= (1)/(6)((2)/(5))^(-(-3))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2wg8nvv4b1wmfgmtcjegrsr9m6nnr2rcsp.png)
![(4)/(375)= (4)/(375)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/y6zv99ucnhotvilcxzjhmnf72ibqap0lso.png)
Thus Option A lies on g(x)
b.(-2, 25/24)
![(25)/(24)= (1)/(6)((2)/(5))^(-(-2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dagn6r8szyk9omn9a9fiav9fes3raomh10.png)
![(25)/(24)\\eq (2)/(75)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/s4tqt5ypqnezrikic8m1rfu7rhann4f4v1.png)
c.(2, 2/75)
![(2)/(75)= (1)/(6)((2)/(5))^(-(2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/oqtean9gdn23i3ym7a9wlkxwgqoxofldr0.png)
![(25)/(24)\\eq (25)/(24)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/k1k7tjubu3mw2erhbmgix7mk6ca40wbulo.png)
d.(3, -125/48)
![(-125)/(48)= (1)/(6)((2)/(5))^(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/beyxs75hv0sqidss70yqefzi8aeuq1di48.png)
![(-125)/(48)\\eq (125)/(48)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2suzb9popkoqhyiu3z11qltey8ocl3ca0d.png)
So, option A is true
(-3, 4/375) lies on g(x)