No. Because sides JM and KL have different slopes from sides AD and BC .
The formula of a slope:
![m=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fc06wy5n2hf2a0hmyba6df4ibmxk1cn53a.png)
For AD:
We have the points A(2, -2) and D(1, -4). Substitute:
![m=(-4-(-2))/(1-2)=(-2)/(-1)=2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/253eknmw6bmcelgj2k309sevksfz2k08na.png)
For JM:
We have the points J(4, -4) and M(2, -9). Substitute:
![m=(-9-(-4))/(2-4)=(-5)/(-2)=2.5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dsuz6mkcgxd68rlrq38blt8acgs37z2k82.png)
![2\\eq2.5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/itj258n5vp1fyh99sqoizzmcq7i6nugfbm.png)
----------------------------------------
Another argument.
No. Because the MJ is not twice as long as AD.
The formula of the length of a segment:
![d=√((x_2-x_1)^2+(y_2-y_1)^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jq23b7gn8a5hqb5oj8gmcxlbivj810cso4.png)
The length of AD:
![|AD|=√((1-2)^2+(-4-(-2))^2)=√((-1)^2+(-2)^2)=√(1+4)=\sqrt5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qq1viugeopcyrtsyan41xbqldzr14p8dqt.png)
The length of MJ:
![|MJ|=√((2-4)^2+(-9-(-4))^2)=√((-2)^2+(-5)^2)=√(4+25)=√(29)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/umaln4wc0umrvne8z39ey5hoo7hq6lpigd.png)
![√(29)\\eq2\sqrt5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ymx5ppnt44x2q7m2vd8kv1nbr6cohrymo8.png)