Answer: The coordinates of point D is (9,7).
Explanation:
Given, A parallelogram ABCD has coordinates A (7,1), B (-2,-3), and C (0,3). .
To find : Coordinates of D.
Let coordinates of D be (x,y).
Since , Diagonals of a parallelogram bisects each other.
So, Mid point of AC = Mid point of BD { Both AC and BD are diagonals]
![\Rightarrow((7+0)/(2),(1+3)/(2))=((-2+x)/(2),(-3+y)/(2))\ \ [\text{Using Mid point formula}]\\\\\Rightarrow\ 7=-2+x\ \ \&\ \ 4=-3+y\\\\\Rightarrow\ x=7+2=9\ \ \&\ \ y=4+3=7](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bx3o0b0d8abpc0pvntczgrjkkrinq1kl4f.png)
Hence, the coordinates of point D is (9,7).