ANSWER
![x \: > \: 17](https://img.qammunity.org/2020/formulas/mathematics/high-school/9o7p2c2y300nogxajpzcewby7tyilyiu6o.png)
Step-by-step explanation
The given function is
![f(x) = 2 {x}^(2) - 31x - 51](https://img.qammunity.org/2020/formulas/mathematics/high-school/pm5pdotnaubhc7fmtwtip5wlampzkwim5b.png)
Let us split the middle term to get,
![f(x) = 2 {x}^(2) -34x + 3x- 51](https://img.qammunity.org/2020/formulas/mathematics/high-school/h9f9qw557g6h8g7ukjoxpvd2dg8l5gripm.png)
We factor to obtain,
![f(x) = 2x(x - 17) -+3(x - 17)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ycjoms0yl9fzbkuut4vvslxu8uuadq4eyd.png)
![f(x) = (2x -+3)(x -17)](https://img.qammunity.org/2020/formulas/mathematics/high-school/i0lnpujmo3zcm3v67fzhxz1ok95kquceii.png)
Let us find the zeros of f(x),
![(2x +3)(x - 17) = 0](https://img.qammunity.org/2020/formulas/mathematics/high-school/nx1ei6lm8impp0yxdf01pg5lhhh6d9swf0.png)
Either
![2x +3 = 0 \: or \: x - 17 = 0](https://img.qammunity.org/2020/formulas/mathematics/high-school/w6ngspg8b4aczb7l1d2neldyzbcd7ecsez.png)
![x = -(3)/(2) \: or \: x = 17](https://img.qammunity.org/2020/formulas/mathematics/high-school/rdwemo1dtym8jjlvczao6dm6qy3mp3r5bz.png)
We need to find the x-value of the vertex, which is the midpoint of the x-intercepts.
This gives us,
![(- (3)/(2) + 17)/(2) = 7.75](https://img.qammunity.org/2020/formulas/mathematics/high-school/lwx2njifqpicnoncr0g3ja6x0ps7i4bjle.png)
Hence the axis of symmetry of the parabola has equation,
![x = 7.75](https://img.qammunity.org/2020/formulas/mathematics/high-school/1c4fupnj1i38lupyeen8bv6gpkgrkiiazn.png)
Since the given function has minimum turning point, it will decrease and then increase.
The function will be increasing for
![x \: > \: 7.75](https://img.qammunity.org/2020/formulas/mathematics/high-school/tmcjayv139hu3bgln864n7g8nccj4y6x9m.png)
The function will be increasing and positive for
![x \: > \: 17](https://img.qammunity.org/2020/formulas/mathematics/high-school/9o7p2c2y300nogxajpzcewby7tyilyiu6o.png)