Answer:
(1)
![f(x)=3((1)/(3))^x](https://img.qammunity.org/2020/formulas/mathematics/high-school/2jxmi3fowmhrqpse50u8g0a31j9wfkj9pi.png)
![g(x)=3((3)/(4))^x](https://img.qammunity.org/2020/formulas/mathematics/high-school/g7t924wkvr86fpvu33ti3ce4yur49essny.png)
(2)
![(8x-9-2x)(15+5x-5)=30x^2+15x-90](https://img.qammunity.org/2020/formulas/mathematics/high-school/dou82ojtj1vpuhdo8y5wxyhqqyt2ddy1nw.png)
(3)
![(x-8)^2=52](https://img.qammunity.org/2020/formulas/mathematics/high-school/htr71667n2ty7uq6tlnwza6vdqgd8bz5og.png)
Explanation:
(1)
Calculation of f(x):
we can use exponential function formula
![f(x)=a(b)^x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4wkdy9xk0bd2ltb1wptmdl9q0fzniuf1j1.png)
we can select any two points to find 'a' and 'b
At x=0 , y=3:
we can plug values
![f(0)=a(b)^0](https://img.qammunity.org/2020/formulas/mathematics/high-school/jl1cply3ngrhkrzzybpl9chcrdmube1r1f.png)
![3=a(b)^0](https://img.qammunity.org/2020/formulas/mathematics/high-school/ena7to37cy6k6h9fpjydkvouc2xa6h1uaw.png)
![a=3](https://img.qammunity.org/2020/formulas/mathematics/high-school/vvy5czbweakwzfwumlixp2vlfbydhcdi9e.png)
now, we can plug it back
![f(x)=3(b)^x](https://img.qammunity.org/2020/formulas/mathematics/high-school/8mudo4iapuvaewkkf2nnby8i148tmcrnld.png)
At x=-1 , y=9:
![f(-1)=3(b)^(-1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/at74nspjeejfq1gpnficvndwwnchiqusrr.png)
![9=3(b)^(-1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/aaal6tylzhqyqma15u56on6o2g6yz0tjay.png)
![b=(1)/(3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/w942t7mfvhggh1kcu7zqg8gz1tvaaj959z.png)
now, we can plug it back
![f(x)=3((1)/(3))^x](https://img.qammunity.org/2020/formulas/mathematics/high-school/2jxmi3fowmhrqpse50u8g0a31j9wfkj9pi.png)
Calculation of g(x):
we can use exponential function formula
![g(x)=a(b)^x](https://img.qammunity.org/2020/formulas/mathematics/high-school/33f7o3w6bed2puokk2zmxiqh47xc0avwi9.png)
we can select any two points to find 'a' and 'b
At x=0 , y=3:
we can plug values
![f(0)=a(b)^0](https://img.qammunity.org/2020/formulas/mathematics/high-school/jl1cply3ngrhkrzzybpl9chcrdmube1r1f.png)
![3=a(b)^0](https://img.qammunity.org/2020/formulas/mathematics/high-school/ena7to37cy6k6h9fpjydkvouc2xa6h1uaw.png)
![a=3](https://img.qammunity.org/2020/formulas/mathematics/high-school/vvy5czbweakwzfwumlixp2vlfbydhcdi9e.png)
now, we can plug it back
![g(x)=3(b)^x](https://img.qammunity.org/2020/formulas/mathematics/high-school/ujlryvc004y41o6ij85fp5copfzrvfuqde.png)
At x=1 , y=4:
![g(1)=3(b)^(1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/evhn786vuefen7vxydfl2m0lguzzx53uuz.png)
![4=3(b)^(-1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/dggpyoagr6w0usl5bgdzra8ycpncf28eqp.png)
![b=(3)/(4)](https://img.qammunity.org/2020/formulas/mathematics/high-school/xd9why4ayyury79bmwferslsbzb5ibtnxe.png)
now, we can plug it back
![g(x)=3((3)/(4))^x](https://img.qammunity.org/2020/formulas/mathematics/high-school/g7t924wkvr86fpvu33ti3ce4yur49essny.png)
(2)
we are given
![(8x-9-2x)(15+5x-5)](https://img.qammunity.org/2020/formulas/mathematics/high-school/5zb3sekadetsezgatuqvypza6jvow93c0n.png)
we can combine like terms
![(8x-2x-9)(5x+15-5)](https://img.qammunity.org/2020/formulas/mathematics/high-school/lety3g5r232dn2s140n7gdeb4n2dxth1oh.png)
![(6x-9)(5x+10)](https://img.qammunity.org/2020/formulas/mathematics/high-school/1q5wyrhnsro3ftgsrtqgjlh2vf3abhspnb.png)
we can distribute it
![=6x\cdot \:5x+6x\cdot \:10+\left(-9\right)\cdot \:5x+\left(-9\right)\cdot \:10](https://img.qammunity.org/2020/formulas/mathematics/high-school/49n2tng87fnjnpognefo1i9kduirykses6.png)
![=6\cdot \:5xx+6\cdot \:10x-9\cdot \:5x-9\cdot \:10](https://img.qammunity.org/2020/formulas/mathematics/high-school/o5uvdcppls7eu3e3qprhhfi15wovmqa7d0.png)
![=30x^2+15x-90](https://img.qammunity.org/2020/formulas/mathematics/high-school/frgdovpk7hpql0uo12i96qe08ld67wrnpk.png)
(3)
we are given
![x^2-16x+12=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/24egl5hrni7r1e6zovsiykeu8jbsp9u83v.png)
Subtract both sides by 12
![x^2-16x+12-12=0-12](https://img.qammunity.org/2020/formulas/mathematics/high-school/3aa3g08oia5gntxpt8lsq2dw40qt79xout.png)
![x^2-16x=-12](https://img.qammunity.org/2020/formulas/mathematics/high-school/xc98ufdhxc9ropk6fber4b6q8z9zkynt38.png)
We can complete square
![x^2-2* 8* x=-12](https://img.qammunity.org/2020/formulas/mathematics/high-school/h117xzwcoquh77tu5qnwlk09lhewdke0kb.png)
we can add 8^2 both sides
![x^2-2* 8* x+8^2=-12+8^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/acodajycv5rhdcczawx2rt3ff5tsyghy6e.png)
![(x-8)^2=-12+8^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/k65x5wre0tz75nbm1eduj04wmoz1vx61yt.png)
![(x-8)^2=-12+64](https://img.qammunity.org/2020/formulas/mathematics/high-school/50ffzkkcu176ze5wi034d4cv2iyivritx4.png)
![(x-8)^2=52](https://img.qammunity.org/2020/formulas/mathematics/high-school/htr71667n2ty7uq6tlnwza6vdqgd8bz5og.png)