Answer:
C) y=x^2-2x+6
Explanation:
We are given three points
(1,5) (-1,9) and (4,14)
We can verify each options
option-A:
![y=x^2+6x+2](https://img.qammunity.org/2020/formulas/mathematics/high-school/uttivfg4tce1uhkbv2xeclv6vef3n5h8nm.png)
we will verify each points
At (1,5):
we can plug x=1 and check whether y=5
![y=(1)^2+6(1)+2](https://img.qammunity.org/2020/formulas/mathematics/high-school/44san18l0ar0ruot7nwrctg3e26v7991kb.png)
![y=9](https://img.qammunity.org/2020/formulas/mathematics/high-school/lbe7cetkyupszfsu17lale83fwrr9twib5.png)
It does not satisfy point
So, this is FALSE
option-B:
![y=x^2+6x-2](https://img.qammunity.org/2020/formulas/mathematics/high-school/f4znj3y2u9m3vhr6nm5bhdxgqb016wl9ly.png)
we will verify each points
At (1,5):
we can plug x=1 and check whether y=5
![y=(1)^2+6(1)-2](https://img.qammunity.org/2020/formulas/mathematics/high-school/gqtho19ghyz41vpma8ume3aiykurzyxnll.png)
![y=5](https://img.qammunity.org/2020/formulas/mathematics/high-school/vz87m1ge16cb4tz4pxuo69xmt9ogjrotw7.png)
It satisfies point
At (-1,9):
we can plug x=-1 and check whether y=9
![y=(-1)^2+6(-1)-2](https://img.qammunity.org/2020/formulas/mathematics/high-school/wedjfr0z8aachkewjfthwcbgrqplmiw3hq.png)
![y=-7](https://img.qammunity.org/2020/formulas/mathematics/high-school/hzbjf2qgu5qt8jzwckhzyjzlv5res9spmg.png)
It does not satisfy point
So, this is FALSE
option-C:
![y=x^2-2x+6](https://img.qammunity.org/2020/formulas/mathematics/high-school/20mjuajq2l8c1ygxeuthxmm3zsfl323amk.png)
we will verify each points
At (1,5):
we can plug x=1 and check whether y=5
![y=(1)^2-2(1)+6](https://img.qammunity.org/2020/formulas/mathematics/high-school/at84aib8e0nrh9ddb0vdmupihjqwryy4b2.png)
![y=5](https://img.qammunity.org/2020/formulas/mathematics/high-school/vz87m1ge16cb4tz4pxuo69xmt9ogjrotw7.png)
It satisfies point
At (-1,9):
we can plug x=-1 and check whether y=9
![y=(-1)^2-2(-1)+6](https://img.qammunity.org/2020/formulas/mathematics/high-school/20w5zeg71dbfs7wuzzqc60b7pzu7v18pkd.png)
![y=9](https://img.qammunity.org/2020/formulas/mathematics/high-school/lbe7cetkyupszfsu17lale83fwrr9twib5.png)
So, it satisfies point
At (4,14):
we can plug x=4 and check whether y=14
![y=(4)^2-2(4)+6](https://img.qammunity.org/2020/formulas/mathematics/high-school/tj80meazm8zbdtcfbqhyrptn29k24kgshv.png)
![y=14](https://img.qammunity.org/2020/formulas/mathematics/high-school/af6kkn9ile9dh5bv4gyk1qjuscg15p5hyf.png)
So, it satisfies point
so, this is TRUE