63.0k views
2 votes
What are the solutions to the system of equations?
y=−x2−5x

−6x+y=−3

1 Answer

0 votes

Answer:
\bold{\bigg((-11+√(133))/(2),\ (-11 +12√(133))/(4)\bigg)\ \text{and}\ \bigg((-11-√(133))/(2),\ (-11 +32√(133))/(4)\bigg)}

Explanation:

y = -x² - 5x

-6x + y = -3

Use substitution method:

-6x + (-x² - 5x) = -3 substituted "y" with "-x² - 5x"

-x² -11x = -3 simplified left side (added like terms)

-x² - 11x + 3 = 0 added 3 to both sides

Solve using quadratic formula:
x=(-b\pm √(b^2-4ac))/(2a)

a = -1, b = -11, c = 3


x=(-(-11)\pm √((-11)^2-4(-1)(3)))/(2(-1))


(11\pm √(121+12))/(-2)


(11\pm √(133))/(-2)


(-11\pm √(133))/(2)


\x=dfrac{-11+√(133)}{2} and
x=(-11-√(133))/(2)

Next, solve for "y" by plugging the x-values above into the equation: y = -x² - 5x


y=-\bigg((-11 +√(133))/(2)\bigg)^2-5\bigg((-11 +√(133))/(2)\bigg)


=-\bigg((121 -22√(133))/(4)\bigg)+\bigg((55 -5√(133))/(2)\bigg)


=(-121 +22√(133))/(4)+(110 -10√(133))/(4)


=(-11 +12√(133))/(4)

and


y=-\bigg((-11 -√(133))/(2)\bigg)^2-5\bigg((-11 -√(133))/(2)\bigg)


=-\bigg((121 -22√(133))/(4)\bigg)+\bigg((55 +5√(133))/(2)\bigg)


=(-121 +22√(133))/(4)+(110 +10√(133))/(4)


=(-11 +32√(133))/(4)

User Taras Velykyy
by
5.5k points