Answer: (-4,-5)
Explanation:
Here ABCD is a parallelogram,
Where A≡(-2,-1), B≡(2,1), C≡(0,-3) and D≡(x,y)
By the property of parallelogram,
AB║CD, AD║BC, AB = CD and AD=BC
If AB ║ CD
⇒ Slope of AB = Slope of CD
⇒
![(1-(-1))/(2-(-2)) = (-3-y)/(0-x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/jv0ckdeh6135y62j7x2ccu4ybhl6tnkfww.png)
⇒
![(1+1)/(2+2)) = (-3-y)/(-x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/q0g097ie5olqij5bb94e6fgr9hanrqiqfe.png)
⇒
![(2)/(4) = (3+y)/(x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/r852k7ubzzb8j3tvtcm5ehixk9eg03epai.png)
⇒
------ (1)
Now, AB = CD
![√((2-(-2))^2+(1-(-1))^2) = √((0-x)^2+(-3-y)^2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/qhvk797icdyis0lgptedc0n61oin96pto2.png)
![√(4^2+2^2) = √(x^2+9+6y+y^2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/4obpeoab53ev8kzuynzb6849o3dryz23ww.png)
![√(16+4) = √(x^2+9+6y+y^2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/vt0mpbneqaiqy8xlt9trir606ecq9sc8gd.png)
![√(20) = √(x^2+9+6y+y^2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/u6lj8837u2iuwj8dkyivu3h2s17c1pswh3.png)
![20 = x^2+9+6y+y^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/xkewhd9z6mx1wukufjlz5uxdfsxw2il9xa.png)
![x^2+6y+y^2=11](https://img.qammunity.org/2020/formulas/mathematics/high-school/rpwueky8iw1b7jn77fn35v4zkjpyyio3wl.png)
From equation (1)
![(6+2y)^2+6y+y^2=11](https://img.qammunity.org/2020/formulas/mathematics/high-school/3qsdjakau5w6njchi8d2uttjlnfrhl9bla.png)
![36+4y^2+24y+6y+y^2=11](https://img.qammunity.org/2020/formulas/mathematics/high-school/ih7aii89ju1tt1xsg1yw38tn4xp16ctvgh.png)
![5y^2+30y+25=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/mo704a1qcj9oxiscaw61ulbwrt4z115gbo.png)
![y^2+6y+5=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/wevih1en7ugaj580csivjk5vda8fs17if4.png)
⇒ y = -1 or -5
Again by equation (1)
for y = -1, x = 4
For y = -5, x = -4
Thus the coordinate of D are (4,-1) or ( -4,-5)
But for D≡(4,-1), AD∦BC
While For D≡(-4,-5) AD ║ BC
Thus the coordinates of D are ( -4,-5)