208k views
2 votes
How do you solve this: In ?PQR, PQ = 39 cm and PN is an altitude. Find PR if QN = 36 cm and RN = 8 cm.

User Shasha
by
6.1k points

1 Answer

3 votes

Answer:

PR = 17 cm


Explanation:

Given :

In ΔPQR,

PQ = 39 cm

PN is an altitude.

QN = 36 cm

RN = 8 cm.

To Find : Length of PR

Solution :

Since we are given that PN is an altitude .

So, PN divides ΔPQR in two right angled triangles named as ΔPQN and ΔPRN. (Refer attached file)

So, first we find Length of PN in ΔPQN using Pythagoras theorem i.e.


(Hypotenuse)^(2)=(Perpendicular)^(2) +(Base)^(2)


(PQ)^(2)=(PN)^(2) +(QN)^(2)


(39)^(2)=(PN)^(2) +(36)^(2)


1521=(PN)^(2) +1296


1521 -1296=(PN)^(2)


225=(PN)^(2)


√(225) = PN


15 = PN

Thus, Length of PN = 15cm

Now to find length of PR we will use Pythagoras theorem in ΔPRN.


(PR)^(2)=(PN)^(2) +(NR)^(2)


(PR)^(2)=(15)^(2) +(8)^(2)


(PR)^(2)=225 +64


(PR)^(2)=289


PR= √(289)


PR= 17

Hence the length of PR = 17 cm



How do you solve this: In ?PQR, PQ = 39 cm and PN is an altitude. Find PR if QN = 36 cm-example-1
User Erik Ahlswede
by
5.9k points