Answer:
Perimeter is 75.7128129211 units
Explanation:
Given ΔАВС, m∠ACB = 90°, CD ⊥ AB and m∠ACD = 30, AD = 8 cm
we have to find the perimeter of ΔABC
In triangle ADC,
![\sin 30^(\circ)=(AD)/(AC)=(8)/(AC)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pen4wmx4icxrcywuhmg8am1km43mv30451.png)
⇒
![AC=16units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7qqzge8yfckhyuokql3lsrszvidesj0n3d.png)
and also,
![\tan 30^(\circ)=(AD)/(CD)=(8)/(CD)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/w5tuawt7srvu4t54f2x62qbjapbjduh2i3.png)
⇒
![CD=8√(3)units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/b2gf53byi3uu7pv6rym7pftw9v6ustdlaz.png)
Now, in triangle BDC,
∠BDC + ∠ADC = 180°
∠BDC = 180°- 90° = 90°
and also ∠DCB=∠ACB - ∠ACD = 90° - 30° = 60°
![\tan 60^(\circ)=(DB)/(CD)=(DB)/(8√(3) )](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ajibme2dg082zy11871mf3rccc6t3tnwm5.png)
DB=
⇒
![DB=24units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jj903gpad6ohfoyqaio4b0vde3ksycp90b.png)
and also
![\sin 60^(\circ)=(DB)/(BC)=(24)/(BC)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/166lxtaegglthvibgxub2l3y96nc4t690v.png)
⇒
![BC=(48)/(√(3)) units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1vt3c0vv3jbjst2v0u6gaosd8hxztkajtg.png)
Hence, Perimeter = AC+AD+DB+BC
= 16+8+24+
![(48)/(√(3) )](https://img.qammunity.org/2020/formulas/mathematics/middle-school/e3dldn4q89bfa871yme8rzgtzkbetwh4o2.png)
= 75.7128129211 units