208k views
2 votes
What is the maximum slope to f(x)= e^(-x^2)?

(What's max. slope?)
a. (sqrt2)/2
b. -(sqrt2)/2
c. -sqrt(2/e)
d. sqrt(2/e)?

User Rivkie
by
5.3k points

1 Answer

7 votes
f'(x)=-2x{e^(-x²)}
Equating f'(x)=0,
i.e,

-2x{e^(-x²)}=0....eqn(i)
For maximum slope:
Differentiating (i) wrt x,we get,
4x² {e^(-x²)}-2 {e^(-x²)}=0
{e^(-x²)} [4x²-2]=0
4x²-2=0
x=1/√2

If f(x)=y then f'(x)=dy/dx=slope
So,
Maximum slope
= f'(x)
= -2x{e^(-x²)}
=-2×(1/✓2){e^(-1/✓2)²}
= -✓2{e^(-1/2)}
=(-sqrt 2/sqrt e)
=-sqrt(2/e)➡c is correct



User Tatarize
by
5.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.