68.3k views
5 votes
A sine function had an amplitude of 3, period of 6pi, horizontal shift of 3pi/2, & vertical shift of -1.

What is the y-value of the positive function when x=2pi?

User Nour Wolf
by
5.8k points

1 Answer

6 votes

Answer:
\bold{y=(1)/(2)}

Explanation:

f(x) = A sin (Bx - C) + D

  • amplitude = |A|
  • period =
    (2\pi)/(B)
  • phase shift =
    (C)/(B)
  • vertical shift = D

A

amplitude of 3 is given so 3 = |A| → A = ± 3, since it is stated that this is a positive function, then A = 3

B

period of 6π is given so
6\pi=(2\pi)/(B)\quad \rightarrow \quad B=(2\pi)/(6\pi)\quad \rightarrow \quad B=(1)/(3)

C


\text{phase shift is given as}\ (3\pi)/(2)\ \text{so}\ (3\pi)/(2)=(C)/((1)/(3))\quad \rightarrow\quad (((1)/(3))3\pi)/(2)=C\quad \rightarrow\quad (\pi)/(2)=C

D

vertical shift of -1 is given so -1 = D


Now, substitute the values of A, B, C, and D into the formula (above):


f(x) = 3\ sin \bigg((1)/(3)x - (\pi)/(2)\bigg) - 1


Next, solve when x = 2π


f(2\pi) = 3\ sin \bigg((1)/(3)(2\pi) - (\pi)/(2)\bigg) - 1


= 3\ sin \bigg((2\pi)/(3) - (\pi)/(2)\bigg) - 1


= 3\ sin \bigg((4\pi)/(6) - (3\pi)/(6)\bigg) - 1


= 3\ sin \bigg((\pi)/(6)\bigg) - 1


= 3\ \bigg((1)/(2)\bigg) - 1


=(3)/(2)-(2)/(2)


=(1)/(2)

User Fsimon
by
5.6k points