Answer:
The system is consistent; it has one solution ⇒ D
Explanation:
A consistent system of equations has at least one solution
- The consistent independent system has exactly 1 solution
- The consistent dependent system has infinitely many solutions
An inconsistent system has no solution
In the system of equations ax + by = c and dx + ey = f, if
- a = d, b = e, and c = f, then the system is consistent dependent and has infinitely many solutions
- a = d, b = e, and c ≠ f, then the system is inconsistent and has no solution
- a ≠ d, and/or b ≠ e, and/or c ≠ f, then the system is consistent independent and has exactly one solution
In the given system of equations
∵ -2y + 2x = 3 ⇒ (1)
∵ -5y + 5x = 12 ⇒ (2)
→ By comparing equations (1) and (2)
∵ -2 ≠ -5
∵ 2 ≠ 5
∵ 3 ≠ 12
→ By using the 3rd rule above
∴ The system is consistent independent and has exactly one solution
∴ The system is consistent; it has one solution