25.9k views
0 votes
Find a number C such that the polynomial p(x)= -x+4x^2+Cx^3-8x^4

Find a number C such that the polynomial p(x)= -x+4x^2+Cx^3-8x^4-example-1
User Aiwiguna
by
8.5k points

1 Answer

5 votes

Answer:

C = 2

Explanation:


p(x)= -x+4x^2+Cx^3-8x^4 \\ \\ </p><p> \because \: given \: polynmial \: has \: zero \: at \: \\x = (1)/(4) \\ \\ \implies \: p\bigg((1)/(4) \bigg) = 0...(1) \\ \\ plug \: x = (1)/(4) \: in \: p(x) \: we \: find \\ \\ p \bigg((1)/(4) \bigg) = - (1)/(4) + 4 {\bigg((1)/(4) \bigg)}^(2) + c {\bigg((1)/(4) \bigg)}^(3) - 8 {\bigg((1)/(4) \bigg)}^(4) \\ \\ 0 = - (1)/(4) + \cancel 4 * {\frac{1}{\cancel{16} } } + c {\bigg((1)/(64) \bigg)} - \cancel 8 * \frac{1}{\cancel{256} } \\ \\0 =\cancel{ - (1)/(4)} + \cancel {{(1)/(4) }} + c {\bigg((1)/(64) \bigg)} - * (1)/(32) \\ \\0 = c {\bigg((1)/(64) \bigg)} - (1)/(32) \\ \\c {\bigg((1)/(64) \bigg)} = (1)/(32) \\ \\ c = (1)/(32) * 64 \\ \\ c = 2

User Ashish Aggarwal
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories