Answer:
for
![n > 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/bm38mocvocmfqxmnkmawpi0tgy16accs8f.png)
Explanation:
Given
-- First Term
--- half common difference
Required
Find the recursive rule
First, we calculate the common difference
![(1)/(2)d = 4](https://img.qammunity.org/2021/formulas/mathematics/high-school/t8ipwpuurfgpuhghii574ulzdpmheopndo.png)
Multiply through by 2
![2 * (1)/(2)d = 2 * 4](https://img.qammunity.org/2021/formulas/mathematics/high-school/o1u6pzq1kiv7vm31kmi7lw9h7hsr5whd6x.png)
![d = 8](https://img.qammunity.org/2021/formulas/engineering/college/rr2ulbd9lgtx1zsxmv0oexw3jhymgp4889.png)
The second term of the sequence is:
![f(2) = 3 + 8 = 11](https://img.qammunity.org/2021/formulas/mathematics/high-school/zus4cob6099q1yt0hk26743rxlkq0iievc.png)
The third term is:
![f(3) = 11 + 8 = 20](https://img.qammunity.org/2021/formulas/mathematics/high-school/n2nmw9gostdg92xf5q3i0xgg11kxigei5p.png)
So, we have:
![f(1) = 3](https://img.qammunity.org/2021/formulas/mathematics/high-school/h9qja7x88v452bw0keq4w8p7e2kk2knm5n.png)
![f(2) = 3 + 8](https://img.qammunity.org/2021/formulas/mathematics/high-school/vg59km0umh7a4mpu2llw4yix1ktrkwphwe.png)
Substitute f(1) for 3
![f(2) = f(1) + 8](https://img.qammunity.org/2021/formulas/mathematics/high-school/czqqhwaciqu3s55c9ga7urkrz4k9t7bdmt.png)
Express 1 as 2 - 1
![f(2) = f(2-1) + 8](https://img.qammunity.org/2021/formulas/mathematics/high-school/l4j0jtg1q9b7c50l77rlwugm6xobx507h6.png)
Substitute n for 2
![f(n) = f(n-1) + 8](https://img.qammunity.org/2021/formulas/mathematics/high-school/pd7o2q7vbhx2pfzz029l0luqpx60wy961v.png)
Similarly:
![f(3) = 11 + 8](https://img.qammunity.org/2021/formulas/mathematics/high-school/wv6jt0f5guvnubf0rysb9alnr1n2amimu0.png)
Substitute f(2) for 11
![f(3) = f(2) + 8](https://img.qammunity.org/2021/formulas/mathematics/high-school/jtzuhzymn50p1yhp3dteldjfuiihchzsw2.png)
Express 2 as 3 - 1
![f(3) = f(3-1) + 8](https://img.qammunity.org/2021/formulas/mathematics/high-school/5ouxkbm7zh01x3qo10ylzgmjrb6wf54gzp.png)
Substitute n for 3
![f(n) = f(n-1) + 8](https://img.qammunity.org/2021/formulas/mathematics/high-school/pd7o2q7vbhx2pfzz029l0luqpx60wy961v.png)
Hence, the recursive is:
for
![n > 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/bm38mocvocmfqxmnkmawpi0tgy16accs8f.png)