The radius of its orbit = 8.27 x 10¹³ m
Further explanation
Given
mass Jupiter=1.9 x 10²⁷ kg
T = 16.9 days=1.46 x 10⁶ s
Required
the radius =r
Solution
To hold the moon in its orbit, the gravitational force between two objects (jupiter and moon) will be equal to the centripetal force
![\tt G(M.m)/(r^2)=m.(v^2)/(r)\rightarrow v=(2.\pi.r)/(T)\\\\M=(r^3.4\pi^2)/(T^2.G)\rightarrow r^3=(GMT^2)/(4\pi^2)](https://img.qammunity.org/2021/formulas/physics/college/ahu3wzq39hutc62sickivqnjpoh698h0dg.png)
G = 6.67 x 10⁻¹¹ N/m²kg²
Input the value :
![\tt r^3=(6.67* 10^(-11)* 1.9* 10^(27)* (1.46* 10^6)^2)/(4\pi^2)\\\\r^3=6.85* 10^(27)\rightarrow r=8.27* 10^(13)](https://img.qammunity.org/2021/formulas/physics/college/lskbrnxlmd9yt17fr0hjwhbt3mek7jjajl.png)