55.8k views
1 vote
Differentiate 10sinxcosx​

User Jrh
by
4.7k points

1 Answer

4 votes

Answer:


10\,cos\,2x

Step-by-step explanation:

To differentiate:
10\,sinx\,\,cos x

Solution:

Use product rule:
[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x) and the following formulae:


(sinx)'=cosx\,,\,(cosx)'=-sinx


(10\,sinx\,\,cos x)'=10[(sinx)'cosx+(sinx)(cosx)']\\\\=10[cosx\,cosx-sinx\,sinx]\\\\=10[cos^2x-sin^2x]

Use
cos^2x-sin^2x=cos2x


(10\,sinx\,cosx)'=10\,cos2x

User Yaroslav Fyodorov
by
5.0k points