Answer:
The answer is A:
![(x^(4)y^(6) - 1)(x^(8)y^(12) - x^(4)y^(6) + 1)](https://img.qammunity.org/2021/formulas/mathematics/high-school/sbfji2x1balnnm0jnbj6y3rmw4fb0ceq8t.png)
Explanation:
To solve this question, first apply the exponent rule to the entire equation:
![x^(12)y^(18) + 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/4rfhsve45m9xwtoau589jw82kep3dx30uo.png)
![= (x^(4)y^(6))^(3) + 1^(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/wg7ny7np5f0751won1t7gqq5bb0tc04jna.png)
Next, we can apply the Sum of Cubes formula. To refresh your memory, the formula is as thus:
![x^(3) + y^(3) = (x + y)(x^(2) - xy + y^(2))](https://img.qammunity.org/2021/formulas/mathematics/high-school/1osu6ucdqcqw5sku0t22mxj84uzkqj44bw.png)
So, let's apply this to the equation above:
![(x^(4)y^(6))^(3) + 1^(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/d2lfa9b57fae31qzvetn47dsyw2vft04l8.png)
![= (x^(4)y^(6) + 1)((x^(4)y^(6))^(2) - x^(4)y^(6) + 1^(2))](https://img.qammunity.org/2021/formulas/mathematics/high-school/pahvmm97ne1o9gettmyybkb5nnna5mwf9q.png)
![= (x^(4)y^(6) + 1)((x^(4)y^(6))^(2) - x^(4)y^(6) + 1^(2))](https://img.qammunity.org/2021/formulas/mathematics/high-school/pahvmm97ne1o9gettmyybkb5nnna5mwf9q.png)
![= (x^(4)y^(6) - 1)(x^(8)y^(12) - x^(4)y^(6) + 1)](https://img.qammunity.org/2021/formulas/mathematics/high-school/8371pxe1x2qvovurab45btinlw57lss116.png)
Therefore, the answer is A.
Hope this helped!