191k views
3 votes
Seperate real and imaginary parts tan(2x+i3y)

1 Answer

6 votes

Answer:

First you have to separate real and imaginary parts of Tan(x+iy)=Tan(z)=sin(z)/cos(z)

sinz=sin(x+iy)=sinxcos(iy)+cosxsin(iy)=sinxcoshy-icosx sinhy

cosz=cos(x+iy)=cosxcos(iy)-sinxsin(iy)=cosxcoshy−isinxsinhy

Now if you plug in Tan(z) and simplify (it is easy!) you get

Tan(z)=(sin(2x)+isinh(2y))/(cos(2x)+cosh(2y))= A+iB.

This means that

A=sin(2x)/(cos(2x)+cosh(2y)) and B= sinh(2y)/(cos(2x)+cosh(2y))

Now,

A/B=sin(2x)/sinh(2y)

If any questions, let me know.

User Knittledan
by
5.1k points