98.8k views
3 votes
Are the equations 2x - y = - 4 and 3x + y = -1 dependent, independent or neither

User Ingen
by
5.8k points

1 Answer

4 votes

Answer:

From the above calculations, it is clear that the consistent system has exactly one solution i.e. x = -1, y =2, therefore, it is independent.

Explanation:

Given the system of equations


\begin{bmatrix}2x-y=-4\\ 3x+y=-1\end{bmatrix}


\mathrm{Multiply\:}2x-y=-4\mathrm{\:by\:}3\:\mathrm{:}\:\quad \:6x-3y=-12


\mathrm{Multiply\:}3x+y=-1\mathrm{\:by\:}2\:\mathrm{:}\:\quad \:6x+2y=-2


\begin{bmatrix}6x-3y=-12\\ 6x+2y=-2\end{bmatrix}


6x+2y=-2


-


\underline{6x-3y=-12}


5y=10

so the system of equations becomes


\begin{bmatrix}6x-3y=-12\\ 5y=10\end{bmatrix}

solving 5y = 10 for y


5y=10

Divide both sides by 5


(5y)/(5)=(10)/(5)

simplify


y=2


\mathrm{For\:}6x-3y=-12\mathrm{\:plug\:in\:}y=2


6x-3\cdot \:2=-12


6x-6=-12

Adding 6 to both sides


6x-6+6=-12+6


6x=-6

Divide both sides by 6


(6x)/(6)=(-6)/(6)


x=-1

Therefore, the solution to the system of equations be:


x=-1,\:y=2

From the above calculations, it is clear that the consistent system has exactly one solution i.e. x = -1, y =2, therefore, it is independent.

User Monk L
by
7.0k points