tan²(8x) = sin²(8x) / cos²(8x)
… = (1 - cos²(8x)) / cos²(8x)
… = 1 / cos²(8x) - 1
… = 2 / (1 + cos(16x)) - 1
where the last equality follows from the half-angle identity for cosine,
cos²(x) = (1 + cos(2x)) / 2
8.6m questions
11.2m answers