41.3k views
3 votes
Simplify x^2 + ax - 2a^2÷
3a^2 - 2ax - x^2?


User Lex V
by
4.9k points

1 Answer

0 votes

Answer:


- (x + 2a)/(3a + x)

Step-by-step explanation:


\frac{ {x + ax - 2 {a}}^(2) }{3a {}^(2) - 2ax - {x}^(2) }

i) write ax as a difference


\frac{ {x}^(2) + 2ax - ax - 2 {a}^(2) }{3 {a}^(2) - 2ax - x {}^(2) }

ii) write -2ax as a difference


\frac{ {x}^(2) + 2ax - ax - 2a {}^(2) }{3a {}^(2) + ax - 3ax - x {}^(2) }

iii) factor out x from the expression


\frac{x(x + 2a) - ax - 2 {a}^(2) }{3 {a}^(2) + ax - 3ax - {x}^(2) }

iv) factor out -a from the expression


\frac{x(x + 2a) - a(x + 2a)}{3 {a}^(2) + ax - 3ax - {x}^(2) }

v) factor out a from the expression


\frac{x(x + 2a) - a(x + 2a)}{a(3a + x) - 3ax - {x}^(2) }

vi) factor out -x from the expression


(x(x + 2a) - a(x + 2a))/(a(3a + x) - x(3a + x))

vii) factor out x+2a from the expression


((x + 2a)(x - a))/(a(3a + x) - x(3a + x))

viii) factor out 3a+x from the expression


((x + 2a)(x - a))/((3a + x)(a - x))

ix) factor out the negative sign from the expression and rearrange the term


((x + 2a)( - ( - a - x)))/((3a + x)(a - x))

x) reduce the fraction a-x


((x + 2a)( - 1))/((3a + x))


- (x + 2a)/(3a + x)

User Linasmnew
by
4.3k points