Answer:
Refractive index of the plastic = 1.46
Step-by-step explanation:
By Snell's law,
![\frac{\text{sin}\theta _(2) }{\text{sin}\theta _(1)}=(n_1)/(n_2)](https://img.qammunity.org/2021/formulas/physics/college/abtepatqkumkttxx0q5b0k5cmwn0fa629y.png)
Here,
= Angle of incidence in medium 1 (Plastic)
= Angle of refraction in medium 2 (Water)
= Refractive index of medium 1 (Plastic)
= Refractive index of medium 2 (Water)
By substituting values in the formula,
![\frac{\text{sin}(48.7)}{\text{sin}(55.5)}=(1.33)/(n_2)](https://img.qammunity.org/2021/formulas/physics/college/l6y0f18mb2sgdb15rilgoepefurkozebzd.png)
![n_2=\frac{1.33* \text{sin}(55.5)}{\text{sin}(48.7)}](https://img.qammunity.org/2021/formulas/physics/college/ta63xknj6csx0736tef1jp0lu9uz14b7sf.png)
= 1.46
Therefore, refractive index of the plastic = 1.46