The question is incomplete. The complete question is :
A sine function that has an amplitude of 16 units, a period of 5 units,a vertical displacement of 3 units up and a phase shift of 2.5 units left. Graph this function and show each step.
Solution :
The standard form of the sine function is
y = a sin (bx - c) + d
Here given :
Amplitude, a = 16
Period :
⇒
![$b = (2\pi)/(5)$](https://img.qammunity.org/2021/formulas/mathematics/high-school/fujmqqdtpy7y4vwj5f969zq3vpnmojki0l.png)
Phase shift :
![$(c)/(b) = 2.5$](https://img.qammunity.org/2021/formulas/mathematics/high-school/4pdaptc8cuhi3i2sndpaipoum7fsxz4vrd.png)
![$\Rightarrow (c)/(2 \pi/5)=(5)/(2)$](https://img.qammunity.org/2021/formulas/mathematics/high-school/ptd0uxlxre8ygkh9sq7i90jl4pgp8nx4g7.png)
∴
![$c = - \pi$](https://img.qammunity.org/2021/formulas/mathematics/high-school/23j9f9yjoh5gipy3otjk9ehnggc379yba5.png)
The vertical displacement : d = 3 units up
Now substituting a, b, c and d values in the standard form gives :
![$y = 16 \sin \left( (2 \pi)/(5)x -(- \pi)\right) + 3$](https://img.qammunity.org/2021/formulas/mathematics/high-school/niw6244k32i07j3itfqvzsxhan1sa08sz4.png)
![$y = 16 \sin \left( (2 \pi)/(5)x + \pi\right) + 3$](https://img.qammunity.org/2021/formulas/mathematics/high-school/92aj7xwbgla11x1azkg0szu7ytb8b3dog2.png)
The graph is attached below.