Answer:
See below for Part A.
Part B)
![\displaystyle h=\Big((125)/(\pi)+27\Big)^(2)/(3)-9\approx7.4614](https://img.qammunity.org/2021/formulas/mathematics/college/lupbvhx0ybsksph814oso3d35x49tu3v9z.png)
Explanation:
Part A)
The parabola given by the equation:
![y^2=4ax](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ls9kjnyuib08rwbd1jkos3lwo6eyekmo8c.png)
From 0 to h is revolved about the x-axis.
We can take the principal square root of both sides to acquire our function:
![y=f(x)=√(4ax)](https://img.qammunity.org/2021/formulas/mathematics/college/4xs4w998sg24z6sruntku4g95qqb8vspl2.png)
Please refer to the attachment below for the sketch.
The area of a surface of revolution is given by:
![\displaystyle S=2\pi\int_(a)^(b)r(x)√(1+\big[f^\prime(x)]^2) \,dx](https://img.qammunity.org/2021/formulas/mathematics/college/ikwm9d9dgg0pz8eh1b0dx89uuldm59s6wy.png)
Where r(x) is the distance between f and the axis of revolution.
From the sketch, we can see that the distance between f and the AoR is simply our equation y. Hence:
![r(x)=y(x)=√(4ax)](https://img.qammunity.org/2021/formulas/mathematics/college/kbdfx49hry0454qx0wha19fx1fdvq3wgkx.png)
Now, we will need to find f’(x). We know that:
![f(x)=√(4ax)](https://img.qammunity.org/2021/formulas/mathematics/college/x37n07353u1j8zshzhewggnfa2rmklix16.png)
Then by the chain rule, f’(x) is:
![\displaystyle f^\prime(x)=(1)/(2√(4ax))\cdot4a=(2a)/(√(4ax))](https://img.qammunity.org/2021/formulas/mathematics/college/2l3c9v4i8xrgoq9y3df8c54wcn1bxiim9x.png)
For our limits of integration, we are going from 0 to h.
Hence, our integral becomes:
![\displaystyle S=2\pi\int_(0)^(h)(√(4ax))\sqrt{1+\Big((2a)/(√(4ax))\Big)^2}\, dx](https://img.qammunity.org/2021/formulas/mathematics/college/oppyet1dsroytzaqi5i88972exdo7l78sv.png)
Simplify:
![\displaystyle S=2\pi\int_(0)^(h)√(4ax)\Big(\sqrt{1+(4a^2)/(4ax)}\Big)\,dx](https://img.qammunity.org/2021/formulas/mathematics/college/hjf21yrnl0516icz5nge7n26b6kb2jldyz.png)
Combine roots;
![\displaystyle S=2\pi\int_(0)^(h)\sqrt{4ax\Big(1+(4a^2)/(4ax)\Big)}\,dx](https://img.qammunity.org/2021/formulas/mathematics/college/u8yu0b4jeldt8hjqzhgd957f68mgwlxwqw.png)
Simplify:
![\displaystyle S=2\pi\int_(0)^(h)√(4ax+4a^2)\, dx](https://img.qammunity.org/2021/formulas/mathematics/college/s7x0tfpge7y0lz96a6fccs4si54sr7geo5.png)
Integrate. We can consider using u-substitution. We will let:
![u=4ax+4a^2\text{ then } du=4a\, dx](https://img.qammunity.org/2021/formulas/mathematics/college/ghebzfdszqk61q9v6o5ahqy45782qkzwoa.png)
We also need to change our limits of integration. So:
![u=4a(0)+4a^2=4a^2\text{ and } \\ u=4a(h)+4a^2=4ah+4a^2](https://img.qammunity.org/2021/formulas/mathematics/college/devk58bb6bf7yhyfup8uvjjtfuk10nefal.png)
Hence, our new integral is:
![\displaystyle S=2\pi\int_(4a^2)^(4ah+4a^2)√(u)\, \Big((1)/(4a)\Big)du](https://img.qammunity.org/2021/formulas/mathematics/college/zy0mialrx6dyh0pmz4x4gn6cctaml1klpv.png)
Simplify and integrate:
![\displaystyle S=(\pi)/(2a)\Big[\,(2)/(3)u^{(3)/(2)}\Big|^(4ah+4a^2)_(4a^2)\Big]](https://img.qammunity.org/2021/formulas/mathematics/college/znrqi4btn0j9xdckhxljghqv22bjnv9qbh.png)
Simplify:
![\displaystyle S=(\pi)/(3a)\Big[\, u^(3)/(2)\Big|^(4ah+4a^2)_(4a^2)\Big]](https://img.qammunity.org/2021/formulas/mathematics/college/qr15n63dvtm2oimp79wismn5nwwok5utsa.png)
FTC:
![\displaystyle S=(\pi)/(3a)\Big[(4ah+4a^2)^(3)/(2)-(4a^2)^(3)/(2)\Big]](https://img.qammunity.org/2021/formulas/mathematics/college/l1dm7bduxh6b3n4bkvs7k7rfnzmq1tt5b4.png)
Simplify each term. For the first term, we have:
![\displaystyle (4ah+4a^2)^(3)/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/9fo43jvdugbgrcvdh9bhyq7k3et0azm2ee.png)
We can factor out the 4a:
![\displaystyle =(4a)^(3)/(2)(h+a)^(3)/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/irzkf3lnjc7qr1t8paiyqyf33b8ieq7xub.png)
Simplify:
![\displaystyle =8a^(3)/(2)(h+a)^(3)/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/8vmr3nl3xsn465pxwjgg2w8s06zdd7zw2x.png)
For the second term, we have:
![\displaystyle (4a^2)^(3)/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/bcre3v8oc75njqlbh446gxlb0d2thjojej.png)
Simplify:
![\displaystyle =(2a)^3](https://img.qammunity.org/2021/formulas/mathematics/college/319kph53q3j17jyqm8ph1bfgk04citos6o.png)
Hence:
![\displaystyle =8a^3](https://img.qammunity.org/2021/formulas/mathematics/college/2ds8ruabd7auvyemhsv09kpiqgzfwczs06.png)
Thus, our equation becomes:
![\displaystyle S=(\pi)/(3a)\Big[8a^(3)/(2)(h+a)^(3)/(2)-8a^3\Big]](https://img.qammunity.org/2021/formulas/mathematics/college/bogwf1sjo004535n59uzi9kymat6dt98to.png)
We can factor out an 8a^(3/2). Hence:
![\displaystyle S=(\pi)/(3a)(8a^(3)/(2))\Big[(h+a)^(3)/(2)-a^(3)/(2)\Big]](https://img.qammunity.org/2021/formulas/mathematics/college/su5cti572aadke08w8cpz21r511e2dauyj.png)
Simplify:
![\displaystyle S=(8\pi)/(3)√(a)\Big[(h+a)^(3)/(2)-a^(3)/(2)\Big]](https://img.qammunity.org/2021/formulas/mathematics/college/o8mhif6g7hkuezgyxvhtumeeddh1eph5q5.png)
Hence, we have verified the surface area generated by the function.
Part B)
We have:
![y^2=36x](https://img.qammunity.org/2021/formulas/mathematics/college/nwu8e8zjhe7b3abbuhuz9nrm3ycpb387i6.png)
We can rewrite this as:
![y^2=4(9)x](https://img.qammunity.org/2021/formulas/mathematics/college/54nznrfwvuoiv939ve8sb8zmw6z1e82qi3.png)
Hence, a=9.
The surface area is 1000. So, S=1000.
Therefore, with our equation:
![\displaystyle S=(8\pi)/(3)√(a)\Big[(h+a)^(3)/(2)-a^(3)/(2)\Big]](https://img.qammunity.org/2021/formulas/mathematics/college/o8mhif6g7hkuezgyxvhtumeeddh1eph5q5.png)
We can write:
![\displaystyle 1000=(8\pi)/(3)√(9)\Big[(h+9)^(3)/(2)-9^(3)/(2)\Big]](https://img.qammunity.org/2021/formulas/mathematics/college/mfbuwc96knuvnhdrme68y4wzqj9pe5k412.png)
Solve for h. Simplify:
![\displaystyle 1000=8\pi\Big[(h+9)^(3)/(2)-27\Big]](https://img.qammunity.org/2021/formulas/mathematics/college/yml1dh4rd7h6ejrtcgxobp3lk3j5ugg841.png)
Divide both sides by 8π:
![\displaystyle (125)/(\pi)=(h+9)^(3)/(2)-27](https://img.qammunity.org/2021/formulas/mathematics/college/z02jjmmigw93x0p5gwwsj7up21ff3wag86.png)
Isolate term:
![\displaystyle (125)/(\pi)+27=(h+9)^(3)/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/fzwpj4q850dhy68ifb2aw5drv1r7vxzoao.png)
Raise both sides to 2/3:
![\displaystyle \Big((125)/(\pi)+27\Big)^(2)/(3)=h+9](https://img.qammunity.org/2021/formulas/mathematics/college/j1c0ozdq7ei1g63hviqv7nmzcavxlnqr5a.png)
Hence, the value of h is:
![\displaystyle h=\Big((125)/(\pi)+27\Big)^(2)/(3)-9\approx7.4614](https://img.qammunity.org/2021/formulas/mathematics/college/lupbvhx0ybsksph814oso3d35x49tu3v9z.png)