64.8k views
19 votes
Let f(x)=7x^5 ln(x) + 1/3 x^3

f’(x)=


I’m stuck on this calculus problem. If anyone could help me work this out. I would appreciate if you showed all your steps.

Let f(x)=7x^5 ln(x) + 1/3 x^3 f’(x)= I’m stuck on this calculus problem. If anyone-example-1
User Vichsu
by
3.9k points

1 Answer

11 votes

Answer:

f'(x) = 7x^4 (5 ln(x) + 1) + x^2

Step-by-step explanation:


\sf Let \ f(x)=7x^5 ln(x) + (1)/(3) x^3

Properties used while differentiating:


i) \quad \sf (d)/(dx) (ln(x)) = (1)/(x)


ii) \quad \sf (d)/(dx) (x^n) = n(x)^(n-1)


iii) \quad \sf (d)/(dx)(uv)=u (dv)/(dx)+v (du)/(dx)

Begin solving:

f'(x) =


\Longrightarrow \sf (d)/(dx)\:\left(7x^5\:ln\left(x\right)\:+\:(1)/(3)\:\:x^3\right)


\Longrightarrow \sf (d)/(dx)\:\left(7x^5\:ln\left(x\right)\right) + (d)/(dx)\left((1)/(3)x^3\right)


\Longrightarrow \sf (d)/(dx)(7x^5)\:\ * ln\left(x\right) + (d)/(dx)(ln(x)) * \ 7x^5 + \left(3\:* (1)/(3)x^(3-1)\right)


\Longrightarrow \sf 5(7x^(5-1))\:*\ ln(x) + (1)/(x) \:*\ 7x^5 \ + x^2


\Longrightarrow \sf 35x^(4) ln(x) + \ 7x^4 \ + x^2


\Longrightarrow \sf 7x^4(5 ln(x) + 1) \ + x^2

User Arno Moonen
by
4.2k points