Answer:
P [ X < 2 ] = 0,091 or P [ X < 2 ] = 9,1 %
Explanation:
The random variable follows a Poisson Distribution then:
P [ X = x ] = λˣ *e₋∧-λ / x!
λ = 4
The probability of X less than 2 is:
P [ X < 2 ] = P[ X = 0 ] + P[ X = 1 ]
P[ X = 0 ] = 4⁰ * e ∧ -4 / 0!
P[ X = 0 ] = e⁻⁴ / 0!
P[ X = 0 ] = e⁻⁴ /1
P[ X = 0 ] = 0,01831
P[ X = 0 ] = 0,01831 or P[ X = 0 ] = 1,8 %
Now
P[ X = 1 ] = 4¹ * e⁻⁴ / 1!
P[ X = 1 ] = 4 * 0,01831
P[ X = 1 ] = 0,073 or P[ X = 1 ] = 7,3 %
Then
P [ X < 2 ] = 0,01831 + 0,073
P [ X < 2 ] = 0,091 or P [ X < 2 ] = 9,1 %