Answer:
Please check the explanation.
Explanation:
Given the equation
-2x² = 4-3 (x + 1)
-2x² = 4-3x-3
-2x² = -3x -7
0 = 2x² -3x -7
We know that the degree of the equation is the highest power of x variable in the given equation.
In the equation 0 = 2x² -3x -7 the highest power of x variable in the given equation is 2.
Thus, the degree of the equation is 2.
Also in the equation 0 = 2x² -3x -7, the unknown variable is 'x'.
Let us determine the value 'x'
2x² -3x -7 = 0
Add 7 to both sides
![2x^2-3x-7+7=0+7](https://img.qammunity.org/2021/formulas/mathematics/high-school/rux7uillyfvg6w2ts0wrycuai6sxx14eze.png)
![2x^2-3x=7](https://img.qammunity.org/2021/formulas/mathematics/high-school/nxh3rcsg5u2rr437zdd3x8s0lgwi5gt2oh.png)
Divide both sides by 2
![(2x^2-3x)/(2)=(7)/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/9ec95iten9yy4t0mijuwwuot31zasb6b3x.png)
![x^2-(3x)/(2)=(7)/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ixp6ukivhmp2bbfs5lkg7fuemkhvkwlsls.png)
Add (-3/4)² to both sides
![x^2-(3x)/(2)+\left(-(3)/(4)\right)^2=(7)/(2)+\left(-(3)/(4)\right)^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/rf30ehwmnr43xoda2826wxn5geun91zw51.png)
![x^2-(3x)/(2)+\left(-(3)/(4)\right)^2=(65)/(16)](https://img.qammunity.org/2021/formulas/mathematics/high-school/4rd9dntyyjkvcn3t8a77a1ao0w8ga1y5lv.png)
![\left(x-(3)/(4)\right)^2=(65)/(16)](https://img.qammunity.org/2021/formulas/mathematics/high-school/i37bya18mibdchpiux3q8qfn1wwnfgr9qw.png)
![\mathrm{For\:}f^2\left(x\right)=a\mathrm{\:the\:solutions\:are\:}f\left(x\right)=√(a),\:-√(a)](https://img.qammunity.org/2021/formulas/mathematics/high-school/rr73rrl5uun4akik8gnj7d1qydxl8v3y3o.png)
solving
![x-(3)/(4)=\sqrt{(65)/(16)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/6k7zjdv7t116148p90gscdi9qx2kjpslzb.png)
![x-(3)/(4)=(√(65))/(√(16))](https://img.qammunity.org/2021/formulas/mathematics/high-school/1lorhihb3nlpx07vpscuwvazmrk5nxkjxo.png)
![x-(3)/(4)=(√(65))/(4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/nu71w7qhmbsgzedwuqwzqjhxpwhphypxya.png)
Add 3/4 to both sides
![x-(3)/(4)+(3)/(4)=(√(65))/(4)+(3)/(4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/co36p9us34m29e8y840auz0ymxmolp7scx.png)
![x=(√(65)+3)/(4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/yjflminwi8f0xhf17nvx9nxhd25295omkg.png)
similarly solving
![x-(3)/(4)=-\sqrt{(65)/(16)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/6g4gzgioe1raf2lvjxbxw8mm4j8yxxqr4q.png)
![x=(-√(65)+3)/(4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/2z30ydvvkezsmxlby0nqmaqic5pfb14m24.png)
So the solution of the equation will have the values of x such as:
![x=(√(65)+3)/(4),\:x=(-√(65)+3)/(4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/holkypjt4bdjoj9jrn56ku5br66n1c08h1.png)