47.1k views
0 votes
Prove that tan 10+tan 70'+taniou = tanio tanfo'tam 1oo.​

1 Answer

6 votes

Question:

Prove that:


tan(10) + tan(70) + tan(100) = tan(10). tan(70). tan(100)

Answer:

Proved

Explanation:

Given


tan(10) + tan(70) + tan(100) = tan(10). tan(70). tan(100)

Required

Prove


tan(10) + tan(70) + tan(100) = tan(10). tan(70). tan(100)

Subtract tan(10) from both sides


- tan(10)+tan(10) + tan(70) + tan(100) = tan(10). tan(70). tan(100) - tan(10)


tan(70) + tan(100) = tan(10). tan(70). tan(100) - tan(10)

Factorize the right hand size


tan(70) + tan(100) = -tan(10)(-tan(70). tan(100) + 1)

Rewrite as:


tan(70) + tan(100) = -tan(10)(1-tan(70). tan(100))

Divide both sides by
1-tan(70). tan(100)


(tan(70) + tan(100))/(1-tan(70). tan(100)) = (-tan(10)(1-tan(70). tan(100)))/(1-tan(70). tan(100)))


(tan(70) + tan(100))/(1-tan(70). tan(100)) = -tan(10)

In trigonometry:


tan(A + B) = (tan(A) + tan(B))/(1 - tan(A)tan(B))

So:


(tan(70) + tan(100))/(1 - tan(70)tan(100)) can be expressed as:
tan(70 + 100)


(tan(70) + tan(100))/(1-tan(70). tan(100)) = -tan(10) gives


tan(70 + 100) = -tan(10)


tan(170) = -tan(10)

In trigonometry:


tan(180 - \theta) = -tan(\theta)

So:


tan(180 - 10) = -tan(10)

Because RHS = LHS

Then:


tan(10) + tan(70) + tan(100) = tan(10). tan(70). tan(100) has been proven

User Edminsson
by
8.1k points