Given:
![y=-2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/3ze6v04plzj0p58wjsvzf9nz6chx9o38kn.png)
![y=√(3)x-1](https://img.qammunity.org/2021/formulas/mathematics/high-school/dliur5z9j5sdkeq1iz2wzqiwhnauy3sris.png)
To find:
The obtuse angle between the given pair of straight lines.
Solution:
The slope intercept form of a line is
...(i)
where, m is slope and b is y-intercept.
The given equations are
![y=0x-2](https://img.qammunity.org/2021/formulas/mathematics/high-school/ybxc4kasrm8s722ov8io6m30e8gq6vbgsi.png)
![y=√(3)x-1](https://img.qammunity.org/2021/formulas/mathematics/high-school/dliur5z9j5sdkeq1iz2wzqiwhnauy3sris.png)
On comparing these equations with (i), we get
![m_1=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/e3zv704fxblaldxza51y1x503zusxowd93.png)
![m_2=√(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/u8esbzy7nqh7kt3k33bemoiqljdz54kj9i.png)
Angle between two lines whose slopes are
is
![\tan \theta=\left|(m_2-m_1)/(1+m_1m_2)\right|](https://img.qammunity.org/2021/formulas/mathematics/high-school/qifoyw69pt4pjc9cf70ojwh7zm24nq28iz.png)
Putting
and
, we get
![\tan \theta=\left|(√(3)-0)/(1+(0)(√(3)))\right|](https://img.qammunity.org/2021/formulas/mathematics/high-school/f3xifgtaeai4k0o3kmniyu94ij7nm7i3ge.png)
![\tan \theta=\left|(√(3))/(1+0)\right|](https://img.qammunity.org/2021/formulas/mathematics/high-school/2lsjelwwj5k5rc9ylqv8rs4allqze9gdfj.png)
![\tan \theta=\pm √(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/oyqvn8w4zlsw509rd7im4jaz1hctwlppxn.png)
Now,
and
![\tan \theta=-√(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/tvx1nrjp3bm18hycz2je5tbzhpfwnitmuv.png)
and
![\tan \theta=\tan (180^\circ-60^\circ)](https://img.qammunity.org/2021/formulas/mathematics/high-school/nhig6dtgg2uidn5wwxc2rdjyugejkbz739.png)
and
![\theta=120^\circ](https://img.qammunity.org/2021/formulas/mathematics/high-school/49c4acjve4tdoza5cgguh4p5xy461h6013.png)
, so it is an obtuse angle and
, so it is an acute angle.
Therefore, the obtuse angle between the given pair of straight lines is 120°.