Answer:
The function which represents this sequence will be:
![a_n=-15n+110](https://img.qammunity.org/2021/formulas/mathematics/college/lf3faysn9thep1uw5jwmrgvkk2lt80h5b3.png)
Hence, option (A) is true.
Explanation:
Given the sequence
![95, 80, 65, 50, ...](https://img.qammunity.org/2021/formulas/mathematics/college/a0j1a3xtpohqblm1lzzzxob7vdeoxr4280.png)
An arithmetic sequence has a constant difference 'd' and is defined by
![a_n=a_1+\left(n-1\right)d](https://img.qammunity.org/2021/formulas/mathematics/middle-school/e5u60u8wsrdebzmvqawfw4log0ao4iut17.png)
computing the differences of all the adjacent terms
![80-95=-15,\:\quad \:65-80=-15,\:\quad \:50-65=-15](https://img.qammunity.org/2021/formulas/mathematics/college/urwalf313z6pth7iml5ua6jlp9d88rs794.png)
As the difference is the same, so
![d = -15](https://img.qammunity.org/2021/formulas/mathematics/college/b1ivnda3w9ntw8lv9fjj1fhc3zw4u04mv4.png)
as
![a_1=95](https://img.qammunity.org/2021/formulas/mathematics/college/rt2hsn22iy396hnc4qe42v59j0972lptuu.png)
Thus, substituting
,
in the nth term of an arithmetic sequence
![a_n=a_1+\left(n-1\right)d](https://img.qammunity.org/2021/formulas/mathematics/middle-school/e5u60u8wsrdebzmvqawfw4log0ao4iut17.png)
![a_n=-15\left(n-1\right)+95](https://img.qammunity.org/2021/formulas/mathematics/college/9d25hv57cxxqwbt0d8ntkiqmldj9sc8roh.png)
![a_n=-15n+110](https://img.qammunity.org/2021/formulas/mathematics/college/lf3faysn9thep1uw5jwmrgvkk2lt80h5b3.png)
Therefore, the function which represents this sequence will be:
![a_n=-15n+110](https://img.qammunity.org/2021/formulas/mathematics/college/lf3faysn9thep1uw5jwmrgvkk2lt80h5b3.png)
Hence, option (A) is true.