9514 1404 393
Answer:
Explanation:
We can call the blank values 'a' and 'b' so we have ...
![ay\sqrt[3]{6y}-14\sqrt[3]{48y^b}=-11y\sqrt[3]{6y}](https://img.qammunity.org/2021/formulas/mathematics/high-school/30hez7inr1vqlsafq0bv17jkv9zmle33wi.png)
We can move everything to inside the radical by cubing those things that are outside.
![\sqrt[3]{6a^3y^4}-\sqrt[3]{131712y^b}=-\sqrt[3]{7986y^4}](https://img.qammunity.org/2021/formulas/mathematics/high-school/f0n0qgtxz65anv7udmugon30issbcg31vn.png)
In order for the terms on the left to be "like" terms, the value of b must be 4. Having determined that, we can remove the cubes from under the radical and factor out the radical.
![ay\sqrt[3]{6y}-28y\sqrt[3]{6y}=-11y\sqrt[3]{6y}\\\\a-28=-11 \qquad\text{divide by $y\sqrt[3]{6y}$}\\\\a=17](https://img.qammunity.org/2021/formulas/mathematics/high-school/4xw4r72wy2srafh0y3iynfubvjkruba1p8.png)
Then the desired expression is ...
![\boxed{17}y\sqrt[3]{6y}-14\sqrt[3]{48y^{\boxed{4}}}=-11y\sqrt[3]{6y}](https://img.qammunity.org/2021/formulas/mathematics/high-school/zykbgmwiyk0eie3stvevkoq2i6v6ehy65w.png)