Solution :
Given :
Mass attached to the spring = 4 kg
Mass dropped = 6 kg
Force constant = 100 N/m
Initial amplitude = 2 m
Therefore,
a).
![$v_(initial) = A w$](https://img.qammunity.org/2021/formulas/physics/college/bkvijgqv8ylkvh7kxv09b0yngc6evfeu9a.png)
![$= 2 * \sqrt{(100)/(4)}$](https://img.qammunity.org/2021/formulas/physics/college/c49o69804si41e633t5qe33l9u6zw9fiqa.png)
= 10 m/s
Final velocity, v at equilibrium position, v = 5 m/s
Now,
![$(1)/(2)(4+4)5^2 = (1)/(2) kA'$](https://img.qammunity.org/2021/formulas/physics/college/sbb710f3dwvntwg2a9tsk7bvw2as9h4ny2.png)
A' = amplitude = 1.4142 m
b).
![$T=2 \pi \sqrt{(m)/(k)}$](https://img.qammunity.org/2021/formulas/physics/college/ln542xzvp4z0n0m12iylslhxprz70wz3ti.png)
m' = 2m
Hence,
![$T'=\sqrt2 T$](https://img.qammunity.org/2021/formulas/physics/college/i4pi41g2rso1lqkoombshwguxdzv24iepx.png)
c).
![$((1)/(2)(4+4)5^2 + (1)/(2)* 4 * 10^2)/((1)/(2) * 4 * 10^2)$](https://img.qammunity.org/2021/formulas/physics/college/gnle735udybobro0vsp9u4cmrjudo1khst.png)
![$=(1)/(2)$](https://img.qammunity.org/2021/formulas/physics/college/n2182mgwpix2dutn40bze7wzvnxrgye3l2.png)
Therefore, factor
![$=(1)/(2)$](https://img.qammunity.org/2021/formulas/physics/college/n2182mgwpix2dutn40bze7wzvnxrgye3l2.png)
Thus, the energy will change half times as the result of the collision.