Answer:
0.31821
0.45134
0.6487
Explanation:
Given :
Mean (m) = 173.2 cm
Standard deviation (s) = 11 cm
a. What percent of heights are below 168 cm?
P(x < 168)
USing the relation to obtain the standardized score (Z) :
Z = (x - m) / s
Z = (168 - 173.2) / 11
Zscore = −0.472727
p(Z < - 0.4727) = 0.31821 ( Z probability calculator)
b. What percent of heights lie between 170 cm and 184 cm?
P(170 < x < 184)
P(170 - 173.2) / 11) < x < P((184 - 173.3)/11)
P(Z < −0.2909) < P(Z < 0.9818)
P(Z < −0.2909) = 0.38556 (Z probability calculator)
P(Z < 0.9818) = 0.8369 ( Z probability calculator)
0.8369 - 0.38556 = 0.45134
C.) What percent of heights lie above 169 cm
P(x > 169)
Z = (169 - 173.2) / 11
Zscore = −0.381818
p(Z > - 0.3818) = 0.6487 ( Z probability calculator)