Answer:
Step-by-step explanation:
(a)
From the given information:
The initial velocity
= 5 m/s
The direction of the angle θ = 30°
Therefore, the component along the x-axis =
![v_1 \ cos \ \theta](https://img.qammunity.org/2021/formulas/physics/college/8eev0qtokt56w1hi5l71rmdapzx18auufn.png)
![v_(1 \ x ) = 5 \ cos \ 30^0](https://img.qammunity.org/2021/formulas/physics/college/cmlafyfrw4f55j23mm3clakoaq4xohknc6.png)
![v_(1x) = 4.33 \ m/s](https://img.qammunity.org/2021/formulas/physics/college/4np6slfr822knpe4tgp673r4gqweka5xoq.png)
The component along the y-axis =
![v_2 { \ sin \ \theta}](https://img.qammunity.org/2021/formulas/physics/college/pjhemkumz1i0f906wrpvbj2k3h5lfjgfc0.png)
![v_(1 \ y ) = 5 \ sin \ 30^0](https://img.qammunity.org/2021/formulas/physics/college/gzxku7wnvlpw2i6zgjd6kp3viw1m3m80ww.png)
![v_(1 \ y ) = 2.5 \ m/s](https://img.qammunity.org/2021/formulas/physics/college/9ckh1ljva19m8ex6wjlxz5mnnwh4mc2b54.png)
To find the final velocity( reflected velocity)
using the same magnitude
![v_2 = 5 \ m/s](https://img.qammunity.org/2021/formulas/physics/college/bsw01e7k9jlgnicyme021i473lt4b7gj8r.png)
The angle from the x-axis can be
![\theta_r = 90^0+60^0](https://img.qammunity.org/2021/formulas/physics/college/9dfqfnw8led8p8ysjsxe7bltnx95q3ci82.png)
= 150°
Thus, the component along the x-axis =
![v_2 \ cos \theta _r](https://img.qammunity.org/2021/formulas/physics/college/km4hek8dydhmv9qv7ep00gt6ig2jmoznuz.png)
![v_(2x) = - 0.433 \ m/s](https://img.qammunity.org/2021/formulas/physics/college/89dib0f1o8i0150ti4k4rt18thw97yaxya.png)
The component along the y-axis =
![v_2 \ sin \theta_r](https://img.qammunity.org/2021/formulas/physics/college/rwguxqugvwwnb4gvgbpvn56yvqn1mvc21h.png)
![v_(2y) = 5 \ sin \ 150^0](https://img.qammunity.org/2021/formulas/physics/college/xpru1hxm2z3zdu0ml2jmkm83i97bjyv3x0.png)
![v_(2y) = 2.5 \ m/s](https://img.qammunity.org/2021/formulas/physics/college/cfqyfcgwxc69pi7xzu7oco4ax2okhaap07.png)
(b)
The velocity
can be written as in vector form.
![v_1 ^(\to) = v_1 x \hat {i} + v_1 y \hat {j}](https://img.qammunity.org/2021/formulas/physics/college/jsddu6xsdo996kqsmk0j3admnbdj3qqs9l.png)
---- (1)
The reflected velocity in vector form can be computed as:
![v_2 ^(\to) = v_2 x \hat {i} + v_2 y \hat {j}](https://img.qammunity.org/2021/formulas/physics/college/5t501m5yyhookkh5ppv8n8hmljqyp3pi50.png)
--- (2)
The change in velocity =
![v_2 ^(\to) - v_1 ^(\to)](https://img.qammunity.org/2021/formulas/physics/college/fgbiiy7za09jnntlvx8phscm89kfzx36bn.png)
![\Delta v ^(\to) = - 4.33 \hat i + 2.5 \hat j - 4.33 \hat i - 2.5 \hat j](https://img.qammunity.org/2021/formulas/physics/college/tyi08q9xmeucngbgsxkoqyhkjga1b3oijj.png)
![\Delta v ^(\to) = - 8.66 \hat { i }](https://img.qammunity.org/2021/formulas/physics/college/5qkj4c0o4n3cxkasnzzzmml37u2cq520wt.png)
(c)
The magnitude of change in velocity =
![| \Delta V |](https://img.qammunity.org/2021/formulas/physics/college/wsf2x456dgdjg1isr5ateehca25fs1fphh.png)
= 8.66 m/s