30.1k views
3 votes
Let x,y,z be positive real numbers , simplify each of the following - √x^-2y^3​

User Kuskmen
by
4.3k points

1 Answer

4 votes

Given:


\sqrt{x^(-2)y^3}

where, x,y,z are positive real numbers.

To find:

The simplified form of the given expression.

Solution:

We have,


\sqrt{x^(-2)y^3}

Using the properties of exponents and radical, we get


=\sqrt{x^(-2)}\cdot √(y^3)
[\because √(ab)=√(a)√(b)]


=\sqrt{(1)/(x^(2))}\cdot \sqrt{y^(2+1)}
[\because x^(-n)=(1)/(x^n)]


=\sqrt{\left((1)/(x)\right)^2}\cdot √(y^2\cdot y)
[\because a^(m+n)=a^ma^n]


=\sqrt{\left((1)/(x)\right)^2}\cdot √(y^2)\cdot √(y)
[\because √(ab)=√(a)√(b)]


=(1)/(x)\cdot y√(y)


=(y√(y))/(x)

Therefore, the simplified form of given expression is
(y√(y))/(x).

User Justin Dearing
by
3.9k points