Answer:
The solution of the system of equations will be:
![x=0,\:y=3](https://img.qammunity.org/2021/formulas/mathematics/high-school/ry51dmnvv7y1h2psus0z73q2ysyp0pl1lp.png)
And the system of equations has ONLY ONE solution.
Explanation:
Given the system of the equations
![\begin{bmatrix}3x+6y=18\\ 3y=-5x+9\end{bmatrix}](https://img.qammunity.org/2021/formulas/mathematics/high-school/jkxn5x2go7pmte8f6eq3psm8jjry6eg7b3.png)
Arrange equation variables for elimination
![\begin{bmatrix}3x+6y=18\\ 5x+3y=9\end{bmatrix}](https://img.qammunity.org/2021/formulas/mathematics/high-school/i82ifynd3yf6xin01sys90944jppoxm3l2.png)
![\mathrm{Multiply\:}3x+6y=18\mathrm{\:by\:}5\:\mathrm{:}\:\quad \:15x+30y=90](https://img.qammunity.org/2021/formulas/mathematics/high-school/rby26zxw19dl24agx2f6aiaej753gnqca0.png)
![\mathrm{Multiply\:}5x+3y=9\mathrm{\:by\:}3\:\mathrm{:}\:\quad \:15x+9y=27](https://img.qammunity.org/2021/formulas/mathematics/high-school/i7xeg38jfvlz4npvw5bv6d3v6ascxjah4y.png)
![\begin{bmatrix}15x+30y=90\\ 15x+9y=27\end{bmatrix}](https://img.qammunity.org/2021/formulas/mathematics/high-school/zvkwqnf3fd981pchd894ufmxe4bf20mywp.png)
![15x+9y=27](https://img.qammunity.org/2021/formulas/mathematics/high-school/xrgxaii8rb88govht1kazt1ac3g42vh43r.png)
![-](https://img.qammunity.org/2021/formulas/mathematics/high-school/1f0xq4ut585caaz76v535ydy2wlbnb2bfh.png)
![\underline{15x+30y=90}](https://img.qammunity.org/2021/formulas/mathematics/high-school/od4akovwlktopjg2gri2gu06io484sy3lc.png)
![-21y=-63](https://img.qammunity.org/2021/formulas/mathematics/high-school/2nbzag4g4bg7q9yfanstpeldt5q09x3n9r.png)
so the system of the equations becomes
![\begin{bmatrix}15x+30y=90\\ -21y=-63\end{bmatrix}](https://img.qammunity.org/2021/formulas/mathematics/high-school/cvee0lefn88e3lsy7axukklzkm0zli6s40.png)
solve -21y = -63
![-21y=-63](https://img.qammunity.org/2021/formulas/mathematics/high-school/2nbzag4g4bg7q9yfanstpeldt5q09x3n9r.png)
![\mathrm{Divide\:both\:sides\:by\:}-21](https://img.qammunity.org/2021/formulas/mathematics/high-school/pu2xrkhxj3knn5ymivzgn5ni7qdskgx9ms.png)
![(-21y)/(-21)=(-63)/(-21)](https://img.qammunity.org/2021/formulas/mathematics/high-school/aoalj9emtt2yxmkefwr9w4re5efkyifnfn.png)
![y=3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/v72nrd9c2mqj4ksfbhtnk9xggc28qvnxp2.png)
![\mathrm{For\:}15x+30y=90\mathrm{\:plug\:in\:}y=3](https://img.qammunity.org/2021/formulas/mathematics/high-school/n62t9v254mdwpc12848hwyljl73nic9ssw.png)
![15x+30\cdot \:3=90](https://img.qammunity.org/2021/formulas/mathematics/high-school/d7q9lyahbpqwmp1voppanqd7o9i3loyt1i.png)
![15x+90=90](https://img.qammunity.org/2021/formulas/mathematics/high-school/sj9fojtarbflmaw9fnkfapnmiy2zhqhkum.png)
subtract 90 from both sides
![15x+90-90=90-90](https://img.qammunity.org/2021/formulas/mathematics/high-school/llur2ac83rsqgumxw432wayeswz7xr5slv.png)
![15x=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/204dg7z5beh2tcejzpdptpxj4fy3ttex9g.png)
Divide both sides by 15
![(15x)/(15)=(0)/(15)](https://img.qammunity.org/2021/formulas/mathematics/high-school/8eetcd84lqco5v2fzgb80qmep11wftvul8.png)
![x = 0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/1mbk3cbhqtj32pj5r7e4qkfku3nffv40fy.png)
as
,
![y=3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/v72nrd9c2mqj4ksfbhtnk9xggc28qvnxp2.png)
so, the system of equations contains only one solution.
Therefore, the solution of the system of equations will be:
![x=0,\:y=3](https://img.qammunity.org/2021/formulas/mathematics/high-school/ry51dmnvv7y1h2psus0z73q2ysyp0pl1lp.png)
And the system of equations has ONLY ONE solution.