Answer:
When y = 0, x = -14
Thus, the x-intercept of the line is:
(x, y) = (-14, 0)
Explanation:
From the table, taking two points
(-94, 24)
(-74, 18)
Finding the slope between (-94, 24) and (-74, 18)
![\mathrm{Slope}=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/nrlo6m8wdo12tyt9h1mdgp9vd4866t2plg.png)
![\left(x_1,\:y_1\right)=\left(-94,\:24\right),\:\left(x_2,\:y_2\right)=\left(-74,\:18\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/v367fmk7td3l0iu8ihsvne9u3giphk5sy7.png)
![m=(18-24)/(-74-\left(-94\right))](https://img.qammunity.org/2021/formulas/mathematics/high-school/o9icnc3kxpeubjks6nw5dvmkcnk93mrn9o.png)
![m=-(3)/(10)](https://img.qammunity.org/2021/formulas/mathematics/high-school/hfkoc4j1lbz2evij14rpsen144d8s6tebx.png)
We know the slope-intercept form of line equation is
![y = mx+b](https://img.qammunity.org/2021/formulas/mathematics/high-school/65dxh1fg3jfjanwatlvuvqa4t096a6as1k.png)
where m is the slope and b is the y-intercept
substituting m = -3/10 and the point (-94, 24) in the slope-intercept to determine the y-intercept 'b'
![24\:=\:-(3)/(10)\left(-94\right)+b](https://img.qammunity.org/2021/formulas/mathematics/high-school/xic2i5i4nsiw54qe1zjz6vvyi381aefu5i.png)
![(3)/(10)\cdot \:94+b=24](https://img.qammunity.org/2021/formulas/mathematics/high-school/pipg550g53bp9ld4nzesw1e5spai4y410o.png)
![(141)/(5)+b=24](https://img.qammunity.org/2021/formulas/mathematics/high-school/uyfb5lopqvs92ma6cyzltf3bwbn0lh5rxv.png)
![b=-(21)/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/qnybitxw4w26a1mnfwixru3yjch7b5m3yy.png)
now
substituting m = -3/10 and y-intercept 'b=-21/5' in the slope-intercept of line equation
![y = mx+b](https://img.qammunity.org/2021/formulas/mathematics/high-school/65dxh1fg3jfjanwatlvuvqa4t096a6as1k.png)
Thus, the equation of the line will be:
![\:y\:=\:-(3)/(10)x-(21)/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/vc76vxzcsqydtpuszvv0g45ust6xmgjqou.png)
We know that the x-intercept can be determined by setting y = 0, and determining for x. so,
![\:0\:=\:-(3)/(10)x-(21)/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/e63ht25dqkc17emlf8rv759lutqtswazvm.png)
switch sides
![-(3)/(10)x-(21)/(5)=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/cjorea6nil8suqckzn860iyc5kh3nw7ztp.png)
![-(3)/(10)x=(21)/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/dwmqehi3w83fmkvypz2lnuly6x2e5pkwqo.png)
![-3x=42](https://img.qammunity.org/2021/formulas/mathematics/high-school/k48f8zo9yleeep8gi5v0i0oe4vq9rje1xw.png)
divide both sides by -3
![(-3x)/(-3)=(42)/(-3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/4fzpfqjo2aj855hd7ztifoqf83qd3m3sbw.png)
![x=-14](https://img.qammunity.org/2021/formulas/mathematics/middle-school/1hk8k65l23f3r9gfdhdkkkotnrcaclpiuo.png)
so when y = 0, x = -14
Thus, the x-intercept of the line is:
(x, y) = (-14, 0)