Answer:
The distance that the spring compresses is:
![v\sqrt{(m)/(k)}](https://img.qammunity.org/2021/formulas/physics/college/iux45s40tj0x2gdq1ogt9ih9gsg7s2lifl.png)
Step-by-step explanation:
Kinetic and Elastic Potential Energy
The kinetic energy of an object of mass m traveling at a speed v is:
![\displaystyle K=(1)/(2)mv^2](https://img.qammunity.org/2021/formulas/physics/college/yge1xdebdenyw7ri54w79xxcaipzacfxx8.png)
The elastic potential energy of a spring of constant k that compresses a distance x is:
![\displaystyle E=(1)/(2)kx^2](https://img.qammunity.org/2021/formulas/physics/college/htw7a4ye4powz4j4oq3bfgzoayny4i0iuo.png)
The block of mass m is moving at a speed v when compresses a spring of constant k. The kinetic energy will eventually transform into elastic energy, but before that, both energies will be equal. It happens when:
![\displaystyle (1)/(2)mv^2=(1)/(2)kx^2](https://img.qammunity.org/2021/formulas/physics/college/na8i9xjbofp2v4jbmr1n7rve3f5n0ia6df.png)
Simplifying:
![\displaystyle mv^2=kx^2](https://img.qammunity.org/2021/formulas/physics/college/3khsrvj5isr37wai4h8ucp4dfvnersd0iv.png)
Dividing by k:
![\displaystyle x^2=(mv^2)/(k)](https://img.qammunity.org/2021/formulas/physics/college/gdqll0rv39fqogm31ixr7enxgrhwsae1ih.png)
Taking square root:
![\displaystyle x=\sqrt{(mv^2)/(k)}=v\sqrt{(m)/(k)}](https://img.qammunity.org/2021/formulas/physics/college/pjpzg8wo1h9ri16iq491lgnfuawq88xb05.png)
The distance that the spring compresses is
![\mathbf{v\sqrt{(m)/(k)}}](https://img.qammunity.org/2021/formulas/physics/college/dlmtmegkj89j627jsw2bn5zj4hw7ul36om.png)