36.3k views
5 votes
4 Tan A/1-Tan^4=Tan2A + Sin2A​

1 Answer

2 votes

tan(2A) + sin(2A) = sin(2A)/cos(2A) + sin(2A)

• rewrite tan = sin/cos

… = 1/cos(2A) (sin(2A) + sin(2A) cos(2A))

• expand the functions of 2A using the double angle identities

… = 2/(2 cos²(A) - 1) (sin(A) cos(A) + sin(A) cos(A) (cos²(A) - sin²(A)))

• factor out sin(A) cos(A)

… = 2 sin(A) cos(A)/(2 cos²(A) - 1) (1 + cos²(A) - sin²(A))

• simplify the last factor using the Pythagorean identity, 1 - sin²(A) = cos²(A)

… = 2 sin(A) cos(A)/(2 cos²(A) - 1) (2 cos²(A))

• rearrange terms in the product

… = 2 sin(A) cos(A) (2 cos²(A))/(2 cos²(A) - 1)

• combine the factors of 2 in the numerator to get 4, and divide through the rightmost product by cos²(A)

… = 4 sin(A) cos(A) / (2 - 1/cos²(A))

• rewrite cos = 1/sec, i.e. sec = 1/cos

… = 4 sin(A) cos(A) / (2 - sec²(A))

• divide through again by cos²(A)

… = (4 sin(A)/cos(A)) / (2/cos²(A) - sec²(A)/cos²(A))

• rewrite sin/cos = tan and 1/cos = sec

… = 4 tan(A) / (2 sec²(A) - sec⁴(A))

• factor out sec²(A) in the denominator

… = 4 tan(A) / (sec²(A) (2 - sec²(A)))

• rewrite using the Pythagorean identity, sec²(A) = 1 + tan²(A)

… = 4 tan(A) / ((1 + tan²(A)) (2 - (1 + tan²(A))))

• simplify

… = 4 tan(A) / ((1 + tan²(A)) (1 - tan²(A)))

• condense the denominator as the difference of squares

… = 4 tan(A) / (1 - tan⁴(A))

(Note that some of these steps are optional or can be done simultaneously)

User Ahmadux
by
5.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.